• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Bluetab

Bluetab

an IBM Company

  • SOLUTIONS
    • DATA STRATEGY
    • Data Readiness
    • Data Products AI
  • Assets
    • TRUEDAT
    • FASTCAPTURE
    • Spark Tune
  • About Us
  • Our Offices
    • Spain
    • Mexico
    • Peru
    • Colombia
  • talent
    • Spain
    • TALENT HUB BARCELONA
    • TALENT HUB BIZKAIA
    • TALENT HUB ALICANTE
    • TALENT HUB MALAGA
  • Blog
  • EN
    • ES

Bluetab

El futuro del Cloud y GenIA en el Next ’23

September 19, 2023 by Bluetab

El futuro del Cloud y GenIA en el Next ’23

Lucas Calvo

Cloud Engineer

Javi Perez

Cloud Engineer

Gabriel Gallardo

Cloud Engineer

Este año desde Bluetab hemos ido al Google Cloud Next, la conferencia anual organizada por Google Cloud, uno de nuestros partners de referencia además de uno de los principales proveedores Cloud del mundo. Este evento está orientado para dar a conocer todos sus nuevos anuncios de productos así como casos de usos de éxito que se han realizado con distintos clientes sobre su plataforma. 

En esta ocasión, hemos viajado hasta San Francisco para ver todas las últimas novedades que nos presenta Google, así como tener la oportunidad de debatir sobre distintas áreas como la inteligencia artificial, aprendizaje automático, análisis de datos y otros temas relacionados con los servicios de Google Cloud con los principales ingenieros que los desarrollan.

Tal y como viene siendo costumbre este año los anuncios más importantes han venido relacionados con la Generative AI, esta revolución tecnológica que nos ha abierto un mundo de posibilidades y avances. Comenzando por la parte clásica, a medida que seguimos generando más datos y explorando sistemas cada vez más complejos con datos que tienen un mayor grado de actualización para garantizar que las recomendaciones y los resultados sean reflejos precisos del mundo en evolución que nos rodea, debemos disponer de una capacidad de cómputo escalable que proporciona una gran conectividad. Orquestar las cargas de trabajo actuales a gran escala siempre ha requerido un esfuerzo manual para gestionar los fallos. Sin embargo, hoy somos capaces de simplificar los esfuerzos que conlleva la gestión de estas cargas de trabajo, sobre todo las destinadas a IA con la integración de las TPU en la nube en GKE, el servicio Kubernetes más escalable y líder del sector en la actualidad. 

Este ha sido uno de los anuncios más importantes del Next’23, ya que ahora los clientes pueden mejorar la productividad del desarrollo de IA aprovechando GKE para gestionar la orquestación de cargas de trabajo de IA a gran escala en las nuevas Cloud TPU v5e, así como en Cloud TPU v4. Esta nueva generación tiene hasta 2,5 veces más rendimiento en comparación con Cloud TPU v4, pero lo realmente importante es la nueva tecnología Multi Slicing que permite realizar entrenamientos distribuidos más allá de los límites físicos de una TPU, escalando a cientos de pods con estos dispositivos.

Igualmente, merece la pena destacar la mejor en las instancias de cómputo para las cargas de trabajo no relacionadas con la IA, pero que tienen igual o mayor importancia para nuestros, para ello Google presente su nueva familia de VMs basadas respectivamente en procesadores de AMD (C3D) o ARM (C3A) que se suman a las instancias A3 donde disfrutaremos de las nuevos GPUs de Nvidia: las H100. Todo aderezado con las nuevas reservas, ahora en versión preliminar, que son una nueva función de Compute Engine que permite reservar capacidad para una fecha futura.

Aunque estas nuevas ventajas  abren las posibilidades a un nuevo mundo en la nube, la realidad sigue siendo que trabajar con Large Language Models es complicado, no solo se necesita losl últimos avances en hardware, sino también el tiempo a invertir para obtener un resultado de calidad. Google se ha puesto las pilas para solventar esta problemática, y ofrecer a nuestros clientes el nuevo concepto de “Model Garden” que Microsoft anunció en su conferencia anual Build y que también AWS está trabajando para incorporar en Amazon JumpStart. Esta nueva capacidad permite elegir con qué Modelo Fundacional queremos trabajar en un click, solo necesitamos entender qué tipo de Prompt Engineering estamos trabajando para comenzar a construir nuestras soluciones de Information Retrieval con Vertex AI Search and Conversation. Pero Google Cloud no se queda en el “Model Garden” donde podremos encontrar los últimos LLM como son: Llama 2 y Code Llama de Meta, Falcon LLM del Technology Innovation Institute y Claude 2 de Anthropic, sino que también podremos personalizarlo con las características más relevantes que nosotros creamos conveniente para el caso de uso que estamos trabajando, lo cual nos permite generar un flujo de trabajo de tipo Reinforcement Learning with Human Feedback (RLHF), aumentando la confianza en nuestras aplicaciones conversacionales y de búsqueda mediante la IA generativa.

Con los nuevos productos de Vertex AI, la base de datos original de la organización se convierte en la pieza fundamental para que la IA generativa se capaz de buscar la información que es relevante para la persona que le está preguntado acerca de una cuestión de negocio, y para que la experiencia sea más sencilla posible se presentaron las nuevas extensiones Vertex AI permiten a los modelos realizar acciones y recuperar información específica en tiempo real y actuar en nombre de los usuarios a través de Google y aplicaciones de terceros como Datastax, MongoDB y Redis, sin olvidar los nuevos conectores que ayudan a ingerir datos de otras aplicaciones empresariales como Salesforce, Confluence y JIRA.

Finalmente, se ha presentado la evolución del Vertex AI Feature Store para su uso tiempo real mediante la búsqueda vectorial y semántica con BigQuery, que mejora su integración de machine learning mediante BigQuery ML, e incorpora la facilidad de uso de notebooks con Colab para crear nuevos modelos a medidas pero con todas las funciones de seguridad y cumplimiento de normativas que una organización require. Es decir, un nuevo mundo de posibilidades para integrar la Generative AI con tu negocio.

Y es a nivel empresarial donde más destaca su anuncio más esperado, la presentación global de Duet AI dentro de Google Workspaces y Google Cloud Services. Aún tendremos que esperar algunos días para que se vayan actualizando todos los servicios con nueva capacidad de IA generativa que nos permitirá realizar una búsqueda avanzado entre todos los documentos que almacenemos en Google Drive para encontrar aquellos que son realmente interesantes par la tarea que estamos haciendo, o ser capaces de escribir actas de forma automática mediante Chat y preguntar por el propio contenido de la reunión, así como crear nuevos presentaciones en base a breves pero concisas descripciones, ahora tiempo de tener que empezar de cero sin una buena base. Duet AI proporciona un asistente de IA generativa entrenada específicamente, por ejemplo, en la documentación de GKE para ayudar a los equipos de la plataforma a reducir el tiempo que tardan en aprender y gestionar Kubernetes, no solo a la hora de desplegar una nueva aplicación, sino también a la hora de encontrar los bugs y depurar su origen, o incluso registrar nuestros findings de seguridad para identificar las fallas que puedan existir en nuestras aplicaciones. Con Duet AI, se podría incluso llevar a plantear una migración de código legacy, o documentar aquellas partes del código que se quedan huérfanas de forma automática. Además, este anuncio no solo se queda ahí ya que Duet permitirá a usuarios sin conocimientos realizar consultas para monitorizar sus aplicaciones con lenguaje natural, evitando así el uso de otros lenguajes más complejos como Promql.

Por la parte más tradicional de data también hemos tenido distintos anuncios como  el nuevo producto que se ha lanzado de BigQuery, BigQuery Studio que nos ofrece un espacio único para el trabajo de ingeniería de datos facilitando que todos los profesionales aceleren los datos hacia los flujos de trabajo de IA . Podríamos destacar entre sus características más importantes que es un espacio de trabajo unificado usando SQL y notebooks en el cual se permite el uso múltiples lenguajes de programación (SQL, Python, Spark, Javascript y lenguaje natural), además ofrece control de versiones e historial de revisiones centralizado y un asistente de código y chat impulsado por IA que nos permitirá mejorar la productividad. Otra parte importante que hay que señalar en BigQuery Studio es que permite realizar de forma sencilla y automática el profiling, la calidad y el linaje para todos los assets de datos coordinado con herramientas como dataplex.

Además en esta edición, se han presentado nuevas funcionalidades para poder llevar BigLake a una plataforma lakehouse gestionada. Entre las nuevas características encontramos la integración con formatos de datos abiertos (Apache Iceberg, Delta y Hudi) permitiendo un control de acceso detallado y rendimiento de forma integrada. Otra de las novedades que se ha incluido BigLake son las tablas gestionadas que usan formato abierto Apache Iceberg y permiten uso de streaming sobre ellas con alto rendimiento así como todas las ventajas que ofrece Apache Iceberg. Con el servicio de BigLake se puede afrontar los nuevos retos que plantean arquitecturas orientadas al Data Mesh de una forma mucho más sencilla y dando la posibilidad de compartir nuestros set de datos dentro de toda la organización.

También en la parte de contenedores y orquestación ha habido algunos puntos importantes, con anuncios en sus productos estrellas y diferenciales en el mercado como es GKE y Cloud Run. Desde hace unos años Google está apostando cada vez más a soluciones de orquestación de contenedores totalmente administradas, ya lo vimos con autopilot en 2021 y Cloud Run y ahora además está queriendo hacer más sencillo el uso de Kubernetes integrándose con Duet para realizar recomendaciones y configuraciones de aplicaciones y servicios con lenguaje natural.

Todas las novedades las podemos resumir en el siguiente post

https://cloud.google.com/blog/topics/google-cloud-next/next-2023-wrap-up

Conclusiones

  • El Next’23 nos ha permitido charlar con los profesionales de Google y  compartir ideas y conocimientos con los distintos partner que han asistido al evento lo que nos permite debatir nuevas visiones y confirmar que desde Bluetab estamos realizando los pasos correctos. Como siempre, las sesiones son de gran utilidad y abarcan las nuevas características y funcionalidades que podemos esperar en los próximos meses para Kubernetes.
  • Después de volver de Next’23 reafirmamos que Google sigue siendo una de las mejores soluciones en el mercado de la analítica avanzada con uno de los anuncios más importantes del Next, Duet. Google es uno de los primeros proveedores cloud que han integrado la parte de Generative AI en su plataforma y esto es gracias a Duet que es una asistente que te ayudará a enfrentarte con los distintos retos que puedan surgir en Google Cloud. 
  • Pero no todo va a ser inteligencia artificial, uno de los puntos que más hay que trabajar y más importantes para una organización es la parte de FinOps, muchas veces el gran olvidado. En este Next hemos visto distintas soluciones aportadas por clientes para una optimización de costes y distintas estrategias para el gobierno y el control de estos. Aún así todas las soluciones pasan por realizar distintos desarrollos exportando los datos de la facturación a Bigquery y creando Dashboard en Looker, una solución de momento que no es totalmente administrada. En este apartado hay mucho trabajo por hacer para que la parte de FinOps sea mucho más proactiva y podamos hacer recomendaciones en tiempo real a los desarrolladores para disminuir el gasto en la organización.

 

Ha sido un placer vivir esta experiencia con todos los desarrolladores e ingenieros de Google y con el resto de compañeros. Además solo nos queda agradecer al equipo de partners de Google España por su dedicación y seguro que nos vemos en la próxima edición. Hasta entonces, sigamos explorando nuevas ideas y tecnologías.

¡Nos vemos en Las Vegas!”

Lucas Calvo

Cloud Engineer

Javi Perez

Cloud Engineer

Gabriel Gallardo

Cloud Engineer

¿Quieres saber más de lo que ofrecemos y ver otros casos de éxito?
DESCUBRE BLUETAB

SOLUCIONES, SOMOS EXPERTOS

DATA STRATEGY
DATA FABRIC
AUGMENTED ANALYTICS

Te puede interesar

Using Large Language Models on Private Information

March 11, 2024
LEER MÁS

$ docker run 2021

February 2, 2021
LEER MÁS

Cómo depurar una Lambda de AWS en local

October 8, 2020
LEER MÁS

Mi experiencia en el mundo de Big Data – Parte II

February 4, 2022
LEER MÁS

Hashicorp Boundary

December 3, 2020
LEER MÁS

Bank Fraud detection with automatic learning II

September 17, 2020
LEER MÁS

Filed Under: Blog, Tech

De documentos en papel a datos digitales con Fastcapture y Generative AI

June 7, 2023 by Bluetab

De documentos en papel a datos digitales con Fastcapture y Generative AI

Resumen

Los avances en Generative AI y en los grandes modelos de lenguaje, LLMs por sus siglas en inglés (Large Language Models), permiten transferir el pre-entrenamiento de estos modelos en una tarea simple, como predecir las palabras que faltan en una frase a tareas más complejas, como procesar documentos en papel para extraer sus datos de forma automática. Esta transferencia del entrenamiento funciona tan bien que es posible plantear desarrollar casos de uso que cierren el gap entre la digitalización y las actividades que requieren documentos en papel.

Hemos desarrollado un proyecto para modernizar la tecnología de AI de Fastcapture, nuestro IDP (Intelligent Document Processing), con Generative AI y LLMs. Hemos conectado Fastcapture con Hugging Face, un hub de la comunidad Open Source de AI. Los resultados que hemos obtenido están muy por encima de un F1 score de 0.9.

 

Introducción

Estamos viviendo una era de disrupciones. Esta situación está produciendo un momento de constantes avances tecnológicos. Me voy a fijar en 2 de ellos, la digitalización y el desarrollo de aplicaciones con inteligencia artificial (AI).

La pandemia COVID-19 ha sido terrible. Ahora bien, una de sus consecuencias ha sido la aceleración de la digitalización. El crecimiento de usuarios digitales ha sido de 2 dígitos en la gran mayoría de las empresas. Sin embargo, muchas actividades en las empresas siguen requiriendo documentos en papel. Un informe del US Bureau of Labor Statistics indica que las compañías americanas se gastaron $5,3Bn en cargar manualmente los documentos durante el año 2021.

Los avances en AI, y en particular los avances en Generative AI y en los grandes modelos de lenguaje han alcanzado un momento que, a parte de la aparición de aplicaciones sorprendentes como ChatGPT, permite el desarrollo de casos de uso de tratamiento de textos e imágenes con unos niveles de precisión muy elevados >0.9.

Juntando estas piezas, hoy es realmente posible plantear automatizar el procesamiento de documentos en papel a escala para convertirlos en datos digitales listos para ser consumidos y analizados en cualquier otra actividad de la empresa. 

 

El problema

Muchas actividades en las empresas siguen requiriendo documentos en papel. Facturas, contratos, informes. Estos documentos contienen datos relevantes y disponer de una versión digital es clave para la digitalización de las empresas. 

Una forma de convertir los documentos en papel en datos digitales es mediante cargas manuales. También se pueden convertir en datos digitales utilizando aplicaciones del tipo de un IDP. Un IDP consiste en un grupo de pipelines con pasos para procesar los documentos y convertirlos en datos digitales. El primer paso es la conversión del documento en texto con un modelo OCR (Optical Character Recognition). 

A continuación vienen los pasos para tratar el texto. Los pasos de tratamiento del texto pueden utilizar modelos de AI. Típicamente estos modelos de AI están basados en una arquitectura RNN (Recurrent Neural Network). Los modelos RNN tratan la secuencia de palabras en orden, una a una. Estos modelos se enfrentan a 2 dificultades a la hora de realizar su tarea. La primera es su capacidad de tratamiento del contexto. Según se van alejando las palabras y las frases, el modelo empieza a perder su capacidad para relacionarlas. La segunda es la dificultad que tienen para escalar y, por lo tanto, para ser entrenados en grandes volúmenes de textos. Estas 2 dificultades suponen un techo para la precisión del IDP y por lo tanto para su capacidad de automatizar la conversión de documentos en papel en datos digitales.

 

La solución propuesta

Los LLM se basan en la arquitectura de los Transformers. Esta arquitectura propuesta en el paper “Attention is all you need” Vaswani et al. 2017 fué totalmente revolucionaria. Trata la secuencia a través del mecanismo de atención mediante matrices. El mecanismo de atención permite realizar un mejor procesamiento del contexto. 

Todas las palabras se encuentran a la misma distancia entre sí medida en número de operaciones matemáticas. Y permite escalar el entrenamiento de forma horizontal. Los modelos basados en esta arquitectura se pueden entrenar con cantidades de textos muy grandes. 

En el paper “Improving Language Understanding by Generative Pre-Training” Radford et al. 2018 proponen un nuevo framework de 2 fases para entrenar los LLMs. Un pre-entrenamiento no supervisado sobre un objetivo sencillo, predecir la siguiente palabra de un texto, y con grandes volúmenes de textos. Y un fine-tune para adaptar el modelo a resolver una tarea NLP concreta como extraer datos relevantes de un documento, y con pocos ejemplos. 

Esta combinación es ideal para transferir el pre-entrenamiento de un modelo con grandes cantidades de textos a tareas para las que se disponen de pocos ejemplos. 

Nuestra aproximación consiste en utilizar LLMs pre-entrenados disponibles en la comunidad Open Source y realizar un fine-tune para convertir los documentos en papel en datos digitales. 

Hemos conectado nuestro IDP Fastcapture con el hub de Hugging Face donde residen LLMs pre-entrenados Open Source para acceder a ellos y generar versiones especializadas mediante un fine-tune en nuestro hub privado sin enviar los datos al hub público.

 

Cómo incorporar los LLMs en un IDP

La estrategia que hemos seguido para incorporar los LLMs en nuestro IDP Fastcapture se ha basado en 3 pilares, aprender a través de I+D, apoyarnos en la comunidad Open Source de AI y construir sobre lo que ya teníamos.

Estos han sido los pasos clave del proyecto:

  1. La selección del LLM pre-entrenado
  2. El diseño del contexto del Transformer
  3. Utilizar entornos multi-GPU para realizar el fine-tune y el servicing

 

La selección del LLM pre-entrenado

La comunidad Open Source de AI da acceso a LLMs pre-entrenados con un nivel de calidad enterprise-grade. Nuestro caso de uso requiere un modelo tipo encoder con capacidades multi idioma. De esta manera un único modelo será capaz de extraer datos relevantes de documentos del mismo tipo con diferente idioma.

Nos decantamos por el modelo pre-entrenado XLM-R propuesto en el paper “Unsupervised Cross-lingual Representation Learning at Scale” Conneau et al. 2020. El modelo XLM-R ha sido pre-entrenado en 2.5TB de textos con 100 idiomas. Hemos utilizado las siguientes tallas:

Modelo

Número de parámetros

XLM-RLarge

550M

XLM-RXL

3.5B



Diseño del contexto del Transformer

Diseñar cómo usar el contexto del LLM es un factor importante a la hora de conseguir niveles de performance de 0.9.

Los documentos están organizados en páginas y frases. Lo que queremos es que el LLM analice frase a frase en búsqueda de datos relevantes. Los tipos de documentos que manejamos son más bien telegráficos, con poco texto. Esto suele ser una tónica habitual al tratar documentos en papel en el mundo empresarial. 

Para dar una mejor oportunidad al LLM de hacer su tarea ubicamos la frase de interés a la derecha del contexto y completamos el contexto por la izquierda con las frases predecesoras que quepan.

El siguiente esquema muestra el diseño al que nos referimos.

Fine-tune y servicing en un entorno multi-GPU

Realizar un fine-tune de un LLM requiere utilizar GPU’s (Graphics Processing Units). El modelo XLM-RLarge puede entrenarse sin utilizar un framework que optimice el uso de la memoria o que distribuya el modelo entre diferentes GPUs. 

Sin embargo la versión XLM-RXL es tan grande que al realizar el algoritmo de gradient descent no cabe y requiere utilizar frameworks de optimización y/o que distribuyan el modelo en el entorno multi-GPU.

El proyecto lo hemos realizado en una máquina virtual con 4 GPUs NVIDIA a10g, y hemos utilizado el framework propuesto en el paper “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models” Rajbhandari et al. 2020. ZeRO optimiza el uso de la memoria para almacenar el estado del modelo a la hora de entrenar y permite distribuir los gradientes y los parámetros entre las GPUs.

Utilizar entornos multi-GPU y frameworks de optimización como ZeRO, a parte de poder escalar el proceso de fine-tuning, permite gestionar los recursos computacionales que requieren modelos extra grandes. 

 

Resultados

En el proyecto hemos utilizado 2 juegos de datos, uno de factura y otro de informes económicos.

 

El impacto de la talla en el performance depende del caso de uso

Las siguientes gráficas muestran el F1 score de las 2 tallas, L y XL, en cada uno de los juegos de datos.

Gráfica 1. F1 score fine-tune facturas XLM-RLarge
Gráfica 2. F1 score fine-tune facturas XLM-RXL
Gráfica 3. F1 score fine-tune informes XLM-RLarge
Gráfica 4. F1 score fine-tune informes XLM-RXL

Estas gráficas ayudan a visualizar la diferencia de performance entre las tallas L y XL en los 2 juegos de datos y poder decidir qué modelo utilizar en el IDP. En el caso de las facturas la talla XL obtiene un score medio 8 puntos básicos mejor que la talla L, mientras que en el caso de los informes económicos la diferencia del score medio es de 1 punto básico. 

Al elegir el tamaño de modelo adecuado para cada caso de uso hay que considerar varios factores como el performance del modelo, los recursos de computación y el trade-off entre precisión y complejidad. En algunos casos, un modelo más pequeño puede proporcionar resultados suficientemente precisos con menores requisitos de computación y menor complejidad de mantenimiento. 

La importancia de diseñar el contexto al trabajar con LLMs

El diseño del contexto es clave para cualquier caso de uso con LLMs. La siguiente gráfica muestra el resultado de un fine-tune del modelo XLM-RLarge sin utilizar el contexto con diseño de ventana. El F1 score medio es 3 puntos básicos inferior sin utilizar el diseño de contexto con ventana.

Gráfica 3. F1 score fine-tune informes XLM-RLarge
sin el diseño de contexto con ventana

Referencias

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. arXiv:1706.03762 

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever. Improving Language Understanding by Generative Pre-Training. 2018. 

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman, Edouard Grave, Myle Ott, Luke Zettlemoyer, Veselin Stoyanov. Unsupervised Cross-lingual Representation Learning at Scale. 2020. arXiv:1911.02116v2.

Samyam Rajbhandari∗ , Jeff Rasley∗ , Olatunji Ruwase, Yuxiong He. ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. 2020. arXiv:1910.02054v3

¿Quieres saber más de lo que ofrecemos y ver otros casos de éxito?
DESCUBRE BLUETAB

SOLUCIONES, SOMOS EXPERTOS

DATA STRATEGY
DATA FABRIC
AUGMENTED ANALYTICS

Te puede interesar

Incentives and Business Development in Telecommunications

October 9, 2020
LEER MÁS

Introduction to HashiCorp products

August 25, 2020
LEER MÁS

Databricks on Azure – An Architecture Perspective (part 1)

February 15, 2022
LEER MÁS

CLOUD SERVICE DELIVERY MODELS

June 27, 2022
LEER MÁS

IBM to acquire Bluetab

July 9, 2021
LEER MÁS

De documentos en papel a datos digitales con Fastcapture y Generative AI

June 7, 2023
LEER MÁS

Filed Under: Blog, Outstanding, Tech

Starburst: Construyendo un futuro basado en datos.

May 25, 2023 by Bluetab

Starburst: Construyendo un futuro basado en datos.

Lucas Calvo

Cloud Engineer

Introducción

En este nuevo artículo vamos a hablar de uno de nuestros partners: Starburst[1]. Starburst es la versión empresarial de Trino[2] realizando nuevas integraciones, mejoras de rendimiento, una capa de seguridad y restando complejidad a la gestión con una interfaz de usuario muy fácil de usar y que te permite realizar distintas configuraciones.

Para los que no conocéis Trino, es un motor de consulta SQL distribuido open-source creado en 2012 por Facebook bajo el nombre Presto. Está diseñado para consultar grandes conjuntos de datos distribuidos en una o más fuentes de datos heterogéneas. Esto significa que podemos consultar datos que residen en diferentes sistemas de almacenamiento como HDFS, AWS S3, Google Cloud Storage o Azure Blob Storage. Trino también tiene la capacidad de federar diferentes fuentes de datos como MySQL, PostgreSQL, Cassandra, Kafka.

Con las nuevas necesidades que van saliendo de arquitecturas orientadas al Data Mesh[3], plataformas analíticas como Starburst son cada vez más importantes y nos permiten centralizar y federar distintas fuentes de datos para así tener solo un punto de entrada a nuestra información. Con esta mentalidad, podemos hacer que nuestros usuarios accedan a la plataforma de Starburst con distintos roles y distinta granularidad de acceso para que puedan consultar los distintos dominios que poseen las empresas. Además Starburst no solo se queda en la consulta de datos, sino que nos permite conectarnos con herramientas analíticas como puedes ser DBT[4] o Jupyter Notebook[5] o herramientas de reporting como Power BI[6] para sacarle más rendimiento a todos nuestros datos. Pero Starburst no solo se queda en eso, sino que nos puede ayudar en la migraciones de datos hacia el Cloud, ya que fácilmente podemos conectarnos a las fuentes de datos y sacar toda la información para volcarlas en cualquier almacenamiento del Cloud.

Como podéis observar, Starburst es capaz de analizar todos sus datos, dentro y alrededor de tu Data Lake, y se conecta a todo un ecosistema de herramientas. Por eso vamos a realizar una serie de artículos para tratar los puntos más relevantes como son el despliegue y configuración de la plataforma, integración con otras herramientas y gobierno y administración de usuarios. En este primer artículo, nos vamos a centrar en el despliegue de Starburst en Kubernetes, así como la configuración que se tiene que realizar para conectar con los distintos componentes de GCP. Además hemos añadido una capa de monitorización con Prometheus[7] y Grafana[8], donde hemos publicado un dashboard con distintas métricas importantes por si cualquier compañía quiere centralizar las métricas en Grafana. Para todo ello, nos vamos a apoyar de un repositorio que hemos creado con el levantamiento de la infraestructura y la instalación de Starburst.

¿Qué necesitas para entender este artículo?

  • Algunos conceptos sobre Terraform[9].
  • Algunos conceptos de Kubernetes.
  • Algunos conceptos de Helm.
  • Algunos conceptos de Prometheus.
  • Algunos conceptos de Grafana.
  • Un cuenta en GCP.
  • Una licencia de Starburst

Arquitectura

Como se puede observar en el diagrama, estos son los componentes que se van a desplegar para la configuración de Starburst. Como pieza central del despliegue, utilizaremos Google Kubernetes Engine. Este es el servicio administrado de orquestación de contenedores de Google. Utilizaremos Kubernetes ya que nos facilitará la gestión de Starburst y aprovecharemos las ventajas del autoscaling de Kubernetes para ampliar el número de workers de Starburst y escalar en más nodos para poder así tener más recursos de computación si tenemos algún pico de trabajo o de usuarios.

Como configuración inicial de nuestro cluster de GKE, comenzaremos con un único nodepool para facilitar el despliegue. Un nodepool es una agrupación de nodos dentro de un cluster con la misma configuración y especificaciones de tipo de máquina. En nuestro caso, nuestro nodepool se llamará `default-node-pool` y el tipo de instancia utilizada será `e2-standard-16`, que es la recomendada por Starburst, ya que el tipo de carga de trabajo necesita nodos con bastante memoria. Además de la instalación de Starburst, también desplegaremos en el cluster tanto Prometheus como Grafana.

Como hemos explicado anteriormente, Starburst está basado en Trino, que es un motor de consulta distribuido. Los principales componentes de Trino son el Coordinator y los Workers. El Coordinator de Trino es el componente responsable de analizar las sentencias, planificar las consultas y gestionar los nodos Workers de Trino. El Coordinator realiza un seguimiento de la actividad de cada Worker y orquesta la ejecución de una consulta. Los Workers son el componente responsable de ejecutar tareas y procesar datos. Los nodos Workers obtienen datos de los conectores e intercambian datos intermedios entre sí. El Coordinator es responsable de obtener los resultados de los Workers y devolver los resultados finales al cliente.

Como componentes transversales de nuestra arquitectura, también desplegaremos una red con una subnet para realizar el despliegue de nuestro cluster de GKE, así como un bucket en Cloud Storage para realizar pruebas de escritura de datos desde Starburst.

Además, como componente fuera de la arquitectura, tendremos jmeter[10], la herramienta con la que realizaremos pruebas de performance para probar la elasticidad de Starburst y poder probar el autoescalado de nuestro cluster.

Despliegue de la infraestructura

Una vez explicada la arquitectura vamos a proceder a realizar el despliegue de todos los componentes. Para ello, nos vamos a ayudar de Terraform como herramienta de IaC. Como partes importantes de este despliegue, tendremos la parte más de infraestructura tradicional que son las VPC, el cluster de GKE y la parte de Cloud Storage como hemos hablado antes, además de los componentes que desplegamos en Kubernetes de una forma totalmente automatizada que son Grafana y Prometheus.

Vamos a empezar con la explicación de la infraestructura más clásica. Para este despliegue haremos uso de dos módulos que están subidos al github:

  • Módulo de GKE[11].
  • Módulo de VPC[12].

Estos dos módulos están invocados en el `main.tf` del repositorio y hacen uso del provider de Google para el despliegue:


```tf
provider "google" {
  project = var.project_id
  region  = var.region
}

provider "google-beta" {
  project = var.project_id
  region  = var.region
}


module "network" {
  source = "git@github.com:lucasberlang/gcp-network.git?ref=v1.0.0"

  project_id         = var.project_id
  description        = var.description
  enable_nat_gateway = true
  offset             = 1

  intra_subnets = [
    {
      subnet_name           = "private-subnet01"
      subnet_ip_cidr        = "10.0.0.0/24"
      subnet_private_access = false
      subnet_region         = var.region
    }
  ]

  secondary_ranges = {
    private-subnet01 = [
      {
        range_name    = "private-subnet01-01"
        ip_cidr_range = var.ip_range_pods
      },
      {
        range_name    = "private-subnet01-02"
        ip_cidr_range = var.ip_range_services
      },
    ]
  }

  labels = var.labels
}

resource "google_storage_bucket" "gcs_starburst" {
  name          = var.name
  location      = "EU"
  force_destroy = var.force_destroy
}

module "gke-starburst" {
  source = "git@github.com:lucasberlang/gcp-gke.git?ref=v1.1.0"

  project_id              = var.project_id
  name                    = "starburst"
  regional                = true
  region                  = var.region
  network                 = module.network.network_name
  subnetwork              = "go-euw1-bt-stb-private-subnet01-dev"
  ip_range_pods           = "private-subnet01-01"
  ip_range_services       = "private-subnet01-02"
  enable_private_endpoint = false
  enable_private_nodes    = false
  master_ipv4_cidr_block  = "172.16.0.0/28"
  workload_identity       = false
  kubernetes_version      = var.kubernetes_version
  
  gce_persistent_disk_csi_driver = true

  master_authorized_networks = [
    {
      cidr_block   = module.network.intra_subnet_ips.0
      display_name = "VPC"
    },
    {
      cidr_block   = "0.0.0.0/0"
      display_name = "shell"
    }
  ]

  cluster_autoscaling = {
    enabled             = true,
    autoscaling_profile = "BALANCED",
    max_cpu_cores       = 300,
    max_memory_gb       = 940,
    min_cpu_cores       = 24,
    min_memory_gb       = 90,
  }


  node_pools = [
    {
      name         = "default-node-pool"
      machine_type = "e2-standard-16"
      auto_repair  = false
      auto_upgrade = false
    },
  ]
  
  node_labels = {
    "starburstpool" = "default-node-pool"
  }

  istio     = var.istio
  dns_cache = var.dns_cache
  labels    = var.labels
}
```
 

Lo único importante a tener en cuenta, es que vamos a desplegar una red con una única subred y que el cluster de GKE está habilitado con el autoescalado para poder incrementar el número de nodos cuando haya una carga de trabajo. Asimismo, es importante tener en cuenta que se ha añadido una etiqueta a todos los nodos que es `”starburstpool” = “default-node-pool”` para aislar el propio despliegue de Starburst del que más tarde haremos uso. Aparte de estos componentes también desplegamos una Cloud Storage para luego configurar el conector de Hive.

Por otra parte, como hemos comentado, también haremos el despliegue de Grafana y Prometheus. Para ello haremos uso del provider de Helm y de Kubernetes de Terraform. 

El despliegue de estos componentes lo tenemos en el archivo `helm.tf`:

```tf
resource "kubernetes_namespace" "prometheus" {
  metadata {
    name = "prometheus"
  }
}

resource "kubernetes_namespace" "grafana" {
  metadata {
    name = "grafana"
  }
}

resource "helm_release" "grafana" {
  chart      = "grafana"
  name       = "grafana"
  namespace  = kubernetes_namespace.grafana.metadata.0.name
  repository = "https://grafana.github.io/helm-charts"

  values = [
    file("templates/grafana.yaml")
  ]
}

resource "kubernetes_secret" "grafana-secrets" {
  metadata {
    name      = "grafana-credentials"
    namespace = kubernetes_namespace.grafana.metadata.0.name
  }
  data = {
    adminUser     = "admin"
    adminPassword = "admin"
  }
}

resource "helm_release" "prometheus" {
  chart      = "prometheus"
  name       = "prometheus"
  namespace  = kubernetes_namespace.prometheus.metadata.0.name
  repository = "https://prometheus-community.github.io/helm-charts"

  values = [
    file("templates/prometheus.yaml")
  ]
}
```
 

Hay varias cosas que tenemos que tener en cuenta, estas son las configuraciones que hemos añadido en los values de cada chart. 

Primero vamos con los valores de Prometheus que hemos configurado. Hemos añadido una configuración extra para que recoja las métricas de Starburst una vez que se levante. Esto lo hemos hecho en la siguiente parte de la configuración:

```yaml
extraScrapeConfigs: |
  - job_name: starburst-monitor
    scrape_interval: 5s
    static_configs:
      - targets: 
        - 'prometheus-coordinator-starburst-enterprise.default.svc.cluster.local:8081'
        - 'prometheus-worker-starburst-enterprise.default.svc.cluster.local:8081'
    metrics_path: /metrics
    scheme: http
```
 

Lo único a tener en cuenta son los targets que hemos añadido, que básicamente son los servicios tanto del Coordinator como de los Workers de Starburst para que recoja todas las métricas.

En la parte de Grafana hemos añadido tanto la configuración de Prometheus, como un dashboard que hemos creado custom para Starburst. 

La configuración que hemos añadida es la siguiente:

```yaml
datasources:
 datasources.yaml:
   apiVersion: 1
   datasources:
   - name: Prometheus
     type: prometheus
     url: http://prometheus-server.prometheus.svc.cluster.local
     isDefault: true


dashboards:
  default:
    Starburst-cluster:
      gnetId: 18767
      revision: 1
      datasource: Prometheus
```
 

En la carpeta infra del repositorio de Github, podrás encontrar todo el código necesario para realizar dicho despliegue.

Instalación y configuración de Starburst

Una vez que tengamos toda la infraestructura levantada, vamos a proceder a desplegar Starburst en nuestro cluster de GKE. Para ello, vamos a desplegar estos componentes:

  • Postgres Database on Kubernetes
  • Hive Metastore Service
  • Starburst Enterprise

El servicio de Hive Mestastore es necesario para configurar el conector de Hive para así poder acceder o escribir a los datos que se guardan en Google Cloud Storage. Como backend de nuestro servicio de Metastore, vamos a desplegar un base de datos PostgreSQL, para así poder guardar toda la información de la metadata en esta base de datos. Además tendremos que configurar el servicio de Hive para pasarle las credenciales de Google Cloud y que tenga permisos para poder leer y escribir de GCS. Por lo tanto, vamos a proceder primero a declarar algunas variables de entorno que necesitaremos para descargar los charts del repositorio privado de Starburst y algunas variables de configuración más que necesitaremos para realizar el despliegue.

Esta serían las variables que vamos a necesitar en nuestro despliegue:

```bash
export admin_usr=     # Choose an admin user name you will use to login to Starburst & Ranger. Do NOT use 'admin'
export admin_pwd=     # Choose an admin password you will use to login to Starburst & Ranger. MUST be a minimum of 8 characters and contain at least one uppercase, lowercase and numeric value.

export registry_pwd= #Credentials harbor registry
export registry_usr= #Credentials harbor registry
export starburst_license=starburstdata.license #License Starburst
# Zone where the cluster will be deployed. e.g. us-east4-b
export zone="europe-west1"
# Google Cloud Project ID where the cluster is being deployed
export google_cloud_project=
# Google Service account name. The service account is used to access services like GCS and BigQuery, so you should ensure that it has the relevant permissions for these
# Give your cluster a name
export cluster_name=

# These next values are automatically set based on your input values
# We'll automatically get the domain for the zone you are selecting. Comment this out if you don't need DNS
#export google_cloud_dns_zone_name=$(gcloud dns managed-zones describe ${google_cloud_dns_zone:?Zone not set} --project ${google_cloud_project_dns:?Project ID not set} | grep dnsName | awk '{ print $2 }' | sed 's/.$//g')

# This is the public URL to access Starburst
export starburst_url=${cluster_name:?Cluster Name not set}-starburst.${google_cloud_dns_zone_name}
# This is the public URL to access Ranger
export ranger_url=${cluster_name:?Cluster Name not set}-ranger.${google_cloud_dns_zone_name}

# Insights DB details
# These are the defaults if you choose to deploy your postgresDB to the K8s cluster
# You can adjust these to connect to an external DB, but be advised that the nodes in the K8s cluster must have access to the URL
export database_connection_url=jdbc:postgresql://postgresql:5432/insights
export database_username=
export database_password=

# Data Products. Leave the password unset as below, if you are connecting directly to the coordinator on port 8080
export data_products_enabled=true
export data_products_jdbc_url=jdbc:trino://coordinator:8080
export data_products_username=${admin_usr}
export data_products_password=

# Starburst Access Control
export starburst_access_control_enabled=true
export starburst_access_control_authorized_users=${admin_usr}

# These last remaining values are static
export xtra_args_hive="--set objectStorage.gs.cloudKeyFileSecret=service-account-key"
export xtra_args_starburst="--values starburst.catalog.yaml"
export xtra_args_ranger=""
```
 

Una vez definidas nuestras variables de entorno procederemos a crearnos un secreto de Kubernetes para configurar las credenciales con las que Hive se va a conectar a GCS.

```bash
kubectl create secret generic service-account-key --from-file key.json
```
 

Para ello, como paso previo, nos hemos creado una service account con permisos en Cloud Storage y en Bigquery y nos hemos descargado las credenciales de esa service account. También como paso previo, añadiremos los repositorio de Helm con el siguiente comando:

```bash
helm repo add --username ${registry_usr} --password ${registry_pwd} starburstdata https://harbor.starburstdata.net/chartrepo/starburstdata
helm repo add bitnami https://charts.bitnami.com/bitnami
```
 

Una vez que tenemos la configuración previa hecha, vamos a proceder a desplegar el servicio de PostgreSQL primero, y posteriormente, el Hive Metastore. Para ello haremos uso de Helm. Para el despliegue de PostgreSQL usaremos el siguiente comando:

```bash
helm upgrade postgres bitnami/postgresql --install --values postgres.yaml \
    --version 12.1.6 \
    --set primary.nodeSelector.starburstpool=default-node-pool \
    --set readReplicas.nodeSelector.starburstpool=default-node-pool
```
 

Hay varios factores a tener en cuenta en el comando anterior. El primero es que el despliegue de PostgreSQL lo haremos en los nodos que tengan el tag `starburstpool=default-node-pool`, que es nuestro worker pool por defecto. Usaremos la versión 12.1.6 de PostgreSQL y la configuración que hemos añadido en postgres es la siguiente:

```yaml
fullnameOverride: postgresql

global:
  postgresql:
    auth:
      database: postgres
      username: postgres
      postgresPassword: ****
  storageClass: "standard"
primary:
  initdb:
    scripts:
      init.sql: |
        create database hive;
        create database ranger;
        create database insights;
        create database datacache;

service:
  type: ClusterIP
``` 

Esta información se encuentra en el archivo `postgres.yaml` y nos configurará el usuario y contraseña de PostgreSQL, y nos creará 4 bases de datos que usa internamente Starburst como backend. En nuestro caso, como podéis observar, hemos configurado el servicio de backend en el mismo cluster que la configuración de Starburst, pero esto se puede configurar fuera del cluster de Kubernetes para entornos productivos. Básicamente podríamos tener un servicio gestionado como es Cloud Sql para así evitar problemas en producción.

Ahora vamos a proceder con el despliegue del servicio de Hive Metastore, esto lo haremos con el siguiente comando:

```bash
helm upgrade hive starburstdata/starburst-hive --install --values hive.yaml \
    --set registryCredentials.username=${registry_usr:?Value not set} \
    --set registryCredentials.password=${registry_pwd:?Value not set} \
    --set nodeSelector.starburstpool=default-node-pool  \
    --set objectStorage.gs.cloudKeyFileSecret=service-account-key
``` 

Aquí tenemos que tener en cuenta varias cosas importantes, la primera es que como en el servicio de PostgreSQL el despliegue se va a realizar en los nodos con el tag `starburstpool=default-node-pool`. El segundo punto importante es que hemos realizado la configuración de las credenciales de Google para que funcione el conector de hive, esto lo hemos realizado con el siguiente comando:

`--set objectStorage.gs.cloudKeyFileSecret=service-account-key` 

Con esta acción,  montamos el fichero de credenciales como un archivo en el despliegue de Hive para que tenga visibilidad en las credenciales. Los valores extras que hemos añadido a la configuración de hive se encuentran en el archivo `hive.yaml` y son los siguientes:

```yaml
database:
  external:
    driver: org.postgresql.Driver
    jdbcUrl: jdbc:postgresql://postgresql:5432/hive
    user: #user postgres
    password: #password postgres
  type: external

expose:
  type: clusterIp

image:
  repository: harbor.starburstdata.net/starburstdata/hive

registryCredentials:
  enabled: true
  registry: harbor.starburstdata.net/starburstdata
```
 

Una vez que tenemos desplegado tanto el servicio de Postgres como el de Hive Metastore, podemos proceder a desplegar Starburst. Primero necesitaremos realizar una serie de pasos previos. El primero será crearnos un secreto de Kubernetes con la licencia de Starburst, el segundo será crearnos un secreto con las variables de entornos que hemos definido antes, esto lo haremos con un pequeño script para quitar complejidad y que nos coja las variables que ya hemos definido. 

Con el siguiente comando procederemos a realizar los pasos anteriores:

```bash
kubectl create secret generic starburst --from-file ${starburst_license}
chmod 755 load_secrets.sh && . ./load_secrets.sh
kubectl apply -f secrets.yaml
```
 

Una vez que tenemos las configuraciones previas vamos a proceder a desplegar Starburst con el siguiente comando:

```bash
helm upgrade starburst-enterprise starburstdata/starburst-enterprise --install --values starburst.yaml \
    --set sharedSecret="$(openssl rand 64 | base64)" \
    --set coordinator.resources.requests.memory=$(echo $(( $(kubectl get nodes --selector='starburstpool=default-node-pool' -o jsonpath='{.items[0].status.allocatable.memory}' | awk -F "Ki" '{ print $1 }')*10/100 ))Ki) \
    --set coordinator.resources.requests.cpu=$(echo $(( $(kubectl get nodes --selector='starburstpool=default-node-pool' -o jsonpath='{.items[0].status.allocatable.cpu}' | awk -F "m" '{ print $1 }')*10/100 ))m) \
    --set coordinator.resources.limits.memory=$(echo $(( $(kubectl get nodes --selector='starburstpool=default-node-pool' -o jsonpath='{.items[0].status.allocatable.memory}' | awk -F "Ki" '{ print $1 }')*10/100 ))Ki) \
    --set coordinator.resources.limits.cpu=$(echo $(( $(kubectl get nodes --selector='starburstpool=default-node-pool' -o jsonpath='{.items[0].status.allocatable.cpu}' | awk -F "m" '{ print $1 }')*10/100 ))m) \
    --set worker.resources.requests.memory=$(echo $(( $(kubectl get nodes --selector='starburstpool=default-node-pool' -o jsonpath='{.items[0].status.allocatable.memory}' | awk -F "Ki" '{ print $1 }') - 10500000 ))Ki) \
    --set worker.resources.requests.cpu=$(echo $(( $(kubectl get nodes --selector='starburstpool=default-node-pool' -o jsonpath='{.items[0].status.allocatable.cpu}' | awk -F "m" '{ print $1 }') - 3500 ))m) \
    --set worker.resources.limits.memory=$(echo $(( $(kubectl get nodes --selector='starburstpool=default-node-pool' -o jsonpath='{.items[0].status.allocatable.memory}' | awk -F "Ki" '{ print $1 }') - 10500000 ))Ki) \
    --set worker.resources.limits.cpu=$(echo $(( $(kubectl get nodes --selector='starburstpool=default-node-pool' -o jsonpath='{.items[0].status.allocatable.cpu}' | awk -F "m" '{ print $1 }') - 3500 ))m) \
    --set coordinator.nodeSelector.starburstpool=default-node-pool 
```
 

Aquí como podéis observar, hay varias cosas a tener en cuenta. La primera es que todos los componentes de Starburst que se despliegan lo hacen en los nodos con el tag `starburstpool=default-node-pool`. Esto simplemente lo hemos hecho para quitar complejidad a la demo.  En entornos productivos, una buena práctica sería tener un nodepool para el Coordinator y otro nodepool para los Workers de Starburst.

Otra cosa a tener en cuenta es la configuración de la memoria y cpu que se hace tanto en los Workers como en el Coordinator. Como buenas prácticas, Starburst recomienda que haya un pod worker por cada nodo que se despliega en nuestro cluster de Kubernetes. Para ello lo que hemos hecho es ajustar la memoria y cpu de nuestros pods al tamaño de máquina que tenemos. Por último están los valores de configuración que hemos utilizado en el despliegue de Starburst, estos se pueden encontrar en el archivo `starburst.yaml` y son los siguientes:

```yaml
catalogs:
  hive: |
    connector.name=hive
    hive.security=starburst
    hive.metastore.uri=thrift://hive:9083
    hive.gcs.json-key-file-path=/gcs-keyfile/key.json
    hive.gcs.use-access-token=false
  postgres: |
    connector.name=postgresql
    connection-url=jdbc:postgresql://postgresql:5432/insights
    connection-user=******
    connection-password=******
  bigquery: |
      connector.name=bigquery
      bigquery.project-id=******
      bigquery.credentials-file=/gcs-keyfile/key.json
prometheus:
  enabled: true
  agent:
    version: "0.16.1"
    port: 8081
    config: "/etc/starburst/telemetry/prometheus.yaml"
  rules:
    - pattern: trino.execution<name=QueryManager><>(running_queries|queued_queries)
      name: $1
      attrNameSnakeCase: true
      type: GAUGE
    - pattern: 'trino.execution<name=QueryManager><>FailedQueries\.TotalCount'
      name: 'starburst_failed_queries'
      type: COUNTER
    - pattern: 'trino.execution<name=QueryManager><>(running_queries)'
      name: 'starburst_running_queries'
    - pattern: 'trino.execution<name=QueryManager><>StartedQueries\.FiveMinute\.Count'
      name: 'starburst_started_queries'
    - pattern: 'trino.execution<name=SqlTaskManager><>InputPositions\.FiveMinute\.Count'
      name: 'starburst_input_rows'
    - pattern: 'trino.execution<name=SqlTaskManager><>InputDataSize\.FiveMinute\.Count'
      name: 'starburst_input_data_bytes'
    - pattern: 'trino.execution<name=QueryManager><>UserErrorFailures\.FiveMinute\.Count'
      name: 'starburst_failed_queries_user'
    - pattern: 'trino.execution<name=QueryManager><>ExecutionTime\.FiveMinutes\.P50'
      name: 'starburst_latency_p50'
    - pattern: 'trino.execution<name=QueryManager><>WallInputBytesRate\.FiveMinutes\.P90'
      name: 'starburst_latency_p90'
    - pattern: 'trino.failuredetector<name=HeartbeatFailureDetector><>ActiveCount'
      name: 'starburst_active_node'
    - pattern: 'trino.memory<type=ClusterMemoryPool, name=general><>FreeDistributedBytes'
      name: 'starburst_free_memory_pool'
    - pattern: 'trino.memory<name=ClusterMemoryManager><>QueriesKilledDueToOutOfMemory'
      name: 'starburst_queries_killed_due_to_out_of_memory'
    - pattern: 'java.lang<type=Memory><HeapMemoryUsage>committed'
      name: 'starburst_heap_size_usage'
    - pattern: 'java.lang<type=Threading><>ThreadCount'
      name: 'starburst_thread_count'
coordinator:
  envFrom:
  - secretRef:
      name: environment-vars
  additionalProperties: |
    starburst.data-product.enabled=${ENV:data_products_enabled}
    data-product.starburst-jdbc-url=${ENV:data_products_jdbc_url}
    data-product.starburst-user=${ENV:data_products_username}
    data-product.starburst-password=
    query.max-memory=1PB
    starburst.access-control.enabled=${ENV:starburst_access_control_enabled}
    starburst.access-control.authorized-users=${ENV:starburst_access_control_authorized_users}
  etcFiles:
    properties:
      config.properties: |
        coordinator=true
        node-scheduler.include-coordinator=false
        http-server.http.port=8080
        discovery-server.enabled=true
        discovery.uri=http://localhost:8080
        usage-metrics.cluster-usage-resource.enabled=true
        http-server.authentication.allow-insecure-over-http=true
        web-ui.enabled=true
        http-server.process-forwarded=true
        insights.persistence-enabled=true
        insights.metrics-persistence-enabled=true
        insights.jdbc.url=${ENV:database_connection_url}
        insights.jdbc.user=${ENV:database_username}
        insights.jdbc.password=${ENV:database_password}
      password-authenticator.properties: |
        password-authenticator.name=file
  nodeSelector:
    starburstpool: default-node-pool
  resources:
    limits:
      cpu: 2
      memory: 12Gi
    requests:
      cpu: 2
      memory: 12Gi

expose:
  type: clusterIp
  ingress:
    serviceName: starburst
    servicePort: 8080
    host: 
    path: "/"
    pathType: Prefix
    tls:
      enabled: true
      secretName: tls-secret-starburst
    annotations:
      kubernetes.io/ingress.class: nginx
      cert-manager.io/cluster-issuer: letsencrypt

registryCredentials:
  enabled: true
  password: ******
  registry: harbor.starburstdata.net/starburstdata
  username: ******

starburstPlatformLicense: starburst

userDatabase:
  enabled: true
  users:
  - password: ******
    username: ******

worker:
  envFrom:
  - secretRef:
      name: environment-vars
  autoscaling:
    enabled: true
    maxReplicas: 10
    minReplicas: 3
    targetCPUUtilizationPercentage: 40
  deploymentTerminationGracePeriodSeconds: 30
  nodeSelector:
    starburstpool: default-node-pool
  resources:
    limits:
      cpu: 8
      memory: 40Gi
    requests:
      cpu: 8
      memory: 40Gi
  starburstWorkerShutdownGracePeriodSeconds: 120
  tolerations:
    - key: "kubernetes.azure.com/scalesetpriority"
      operator: "Exists"
      effect: "NoSchedule"

additionalVolumes:
  - path: /gcs-keyfile/key.json
    subPath: key.json
    volume:
      configMap:
        name: "sa-key"
```
 

En esta configuración hay varios valores a tener en cuenta, como son catalogs, prometheus, worker y additionalVolumes.

Vamos a empezar explicando la parte de catalogs. Para los que no lo sepan, un catálogo en Starburst es la configuración que permite acceder a unas fuentes de datos determinadas. Cada clúster de Starburst puede tener configurados múltiples catálogos y, por tanto, permitir el acceso a diversas fuentes de datos. En nuestro caso hemos definido el catálogo de Hive, PostgreSQL y Bigquery para poder acceder a dichas fuentes de datos:

```yaml
catalogs:
  hive: |
    connector.name=hive
    hive.security=starburst
    hive.metastore.uri=thrift://hive:9083
    hive.gcs.json-key-file-path=/gcs-keyfile/key.json
    hive.gcs.use-access-token=false
  postgres: |
    connector.name=postgresql
    connection-url=jdbc:postgresql://postgresql:5432/insights
    connection-user=******
    connection-password=******
  bigquery: |
      connector.name=bigquery
      bigquery.project-id=******
      bigquery.credentials-file=/gcs-keyfile/key.json
```
 

La segunda configuración a tener en cuenta es la de Prometheus, esto lo realizamos para exponer ciertas métricas a Prometheus y poder sacar información relevante en un dashboard de Grafana. Para ello tenemos la siguiente configuración:

```yaml
prometheus:
  enabled: true
  agent:
    version: "0.16.1"
    port: 8081
    config: "/etc/starburst/telemetry/prometheus.yaml"
  rules:
    - pattern: trino.execution<name=QueryManager><>(running_queries|queued_queries)
      name: $1
      attrNameSnakeCase: true
      type: GAUGE
    - pattern: 'trino.execution<name=QueryManager><>FailedQueries\.TotalCount'
      name: 'starburst_failed_queries'
      type: COUNTER
    - pattern: 'trino.execution<name=QueryManager><>(running_queries)'
      name: 'starburst_running_queries'
    - pattern: 'trino.execution<name=QueryManager><>StartedQueries\.FiveMinute\.Count'
      name: 'starburst_started_queries'
    - pattern: 'trino.execution<name=SqlTaskManager><>InputPositions\.FiveMinute\.Count'
      name: 'starburst_input_rows'
    - pattern: 'trino.execution<name=SqlTaskManager><>InputDataSize\.FiveMinute\.Count'
      name: 'starburst_input_data_bytes'
    - pattern: 'trino.execution<name=QueryManager><>UserErrorFailures\.FiveMinute\.Count'
      name: 'starburst_failed_queries_user'
    - pattern: 'trino.execution<name=QueryManager><>ExecutionTime\.FiveMinutes\.P50'
      name: 'starburst_latency_p50'
    - pattern: 'trino.execution<name=QueryManager><>WallInputBytesRate\.FiveMinutes\.P90'
      name: 'starburst_latency_p90'
    - pattern: 'trino.failuredetector<name=HeartbeatFailureDetector><>ActiveCount'
      name: 'starburst_active_node'
    - pattern: 'trino.memory<type=ClusterMemoryPool, name=general><>FreeDistributedBytes'
      name: 'starburst_free_memory_pool'
    - pattern: 'trino.memory<name=ClusterMemoryManager><>QueriesKilledDueToOutOfMemory'
      name: 'starburst_queries_killed_due_to_out_of_memory'
    - pattern: 'java.lang<type=Memory><HeapMemoryUsage>committed'
      name: 'starburst_heap_size_usage'
    - pattern: 'java.lang<type=Threading><>ThreadCount'
      name: 'starburst_thread_count'
```
 

En la configuración de los workers, vamos a activar el autoescalado de estos pods. Para ello vamos a realizar una configuración para que haya un mínimo de 3 pods workers que se traducirán en 3 nodos en nuestro cluster de GKE y un máximo de 10 pods. Para el autoescalado vamos a usar la métrica de consumo de CPU. 

Los valores son los siguientes:

```yaml
worker:
  envFrom:
  - secretRef:
      name: environment-vars
  autoscaling:
    enabled: true
    maxReplicas: 10
    minReplicas: 3
    targetCPUUtilizationPercentage: 40
```
 

Por último, añadiremos un volumen adicional a nuestro despliegue para poder montar las credenciales de Google cloud tanto en el coordinator como en los workers.

Esto lo haremos de la siguiente forma:

```yaml
additionalVolumes:
  - path: /gcs-keyfile/key.json
    subPath: key.json
    volume:
      configMap:
        name: "sa-key"
```
 

Con todos estos pasos, tendríamos nuestro cluster de Starburst ya operativo.

Consultas en GCP y autoescalado de Starburst

Una vez realizado el levantamiento del cluster de Starburst, vamos a realizar algunas consultas para probar su rendimiento y funcionamiento. Para ello vamos a realizar consultas de lectura en el esquema de TPCH[13] y después vamos a escribir la salida de estas consultas en el bucket de Google que hemos creado en los pasos de despliegue. 

Las consultas que vamos a ejecutar se encuentran en la carpeta de queries en los archivos `tpch.sql` y `gcs_storage.sql`.

Para lanzar las consultas será tan sencillo como irnos al apartado de consultas de la interfaz web y ejecutar las primeras consultas del archivo `tpch.sql`:

```sql
 CREATE SCHEMA hive.logistic WITH (location = 'gs://starburst-bluetab-test/logistic');

CREATE VIEW "hive"."logistic"."shipping_priority" SECURITY DEFINER AS
SELECT
  l.orderkey
, SUM((l.extendedprice * (1 - l.discount))) revenue
, o.orderdate
, o.shippriority
FROM
  tpch.tiny.customer c
, tpch.tiny.orders o
, tpch.tiny.lineitem l
WHERE ((c.mktsegment = 'BUILDING') AND (c.custkey = o.custkey) AND (l.orderkey = o.orderkey))
GROUP BY l.orderkey, o.orderdate, o.shippriority
ORDER BY revenue DESC, o.orderdate ASC;


CREATE VIEW "hive"."logistic"."minimum_cost_supplier" SECURITY DEFINER AS
SELECT
  s.acctbal
, s.name SupplierName
, n.name Nation
, p.partkey
, p.mfgr
, s.address
, s.phone
, s.comment
FROM
  tpch.tiny.part p
, tpch.tiny.supplier s
, tpch.tiny.partsupp ps
, tpch.tiny.nation n
, tpch.tiny.region r
WHERE ((p.partkey = ps.partkey) AND (s.suppkey = ps.suppkey) AND (p.size = 15) AND (p.type LIKE '%BRASS') AND (s.nationkey = n.nationkey) AND (n.regionkey = r.regionkey) AND (r.name = 'EUROPE') AND (ps.supplycost = (SELECT MIN(ps.supplycost)
FROM
  tpch.tiny.partsupp ps
, tpch.tiny.supplier s
, tpch.tiny.nation n
, tpch.tiny.region r
WHERE ((p.partkey = ps.partkey) AND (s.suppkey = ps.suppkey) AND (s.nationkey = n.nationkey) AND (n.regionkey = r.regionkey) AND (r.name = 'EUROPE'))
)))
ORDER BY s.acctbal DESC, n.name ASC, s.name ASC, p.partkey ASC;



select
  cst.name as CustomerName,
  cst.address,
  cst.phone,
  cst.nationkey,
  cst.acctbal as BookedOrders,
  cst.mktsegment,
  nat.name as Nation,
  reg.name as Region
from tpch.sf1.customer as cst
join tpch.sf1.nation as nat on nat.nationkey = cst.nationkey
join tpch.sf1.region as reg on reg.regionkey = nat.regionkey
where reg.regionkey = 1;

select
  nat.name as Nation,
  avg(cst.acctbal) as average_booking
from tpch.sf100.customer as cst
join tpch.sf100.nation as nat on nat.nationkey = cst.nationkey
join tpch.sf100.region as reg on reg.regionkey = nat.regionkey
where reg.regionkey = 1
group by nat.name;
```
 

En estas pruebas crearemos una serie de vistas y haremos unos selects con varios cruces sobre las tablas de customer(15000000 rows), nation(25 rows) y region(5 rows) del esquema sf100 para comprobar que todo funciona correctamente y ver que tenemos nuestra plataforma operativa. Una vez comprobado que todo es correcto, probaremos a escribir algunos resultados en el bucket que hemos creado.

Para ello lanzaremos las consultas que se encuentran en el archivo `gcs_storage.sql`:

{"type":"elementor","siteurl":"https://bluetab.net/es/wp-json/","elements":[{"id":"1a82503","elType":"widget","isInner":false,"isLocked":false,"settings":{"code_language":"python","code_block":"```sql\n CREATE SCHEMA hive.logistic WITH (location = 'gs://starburst-bluetab-test/logistic');\n\nCREATE VIEW \"hive\".\"logistic\".\"shipping_priority\" SECURITY DEFINER AS\nSELECT\n  l.orderkey\n, SUM((l.extendedprice * (1 - l.discount))) revenue\n, o.orderdate\n, o.shippriority\nFROM\n  tpch.tiny.customer c\n, tpch.tiny.orders o\n, tpch.tiny.lineitem l\nWHERE ((c.mktsegment = 'BUILDING') AND (c.custkey = o.custkey) AND (l.orderkey = o.orderkey))\nGROUP BY l.orderkey, o.orderdate, o.shippriority\nORDER BY revenue DESC, o.orderdate ASC;\n\n\nCREATE VIEW \"hive\".\"logistic\".\"minimum_cost_supplier\" SECURITY DEFINER AS\nSELECT\n  s.acctbal\n, s.name SupplierName\n, n.name Nation\n, p.partkey\n, p.mfgr\n, s.address\n, s.phone\n, s.comment\nFROM\n  tpch.tiny.part p\n, tpch.tiny.supplier s\n, tpch.tiny.partsupp ps\n, tpch.tiny.nation n\n, tpch.tiny.region r\nWHERE ((p.partkey = ps.partkey) AND (s.suppkey = ps.suppkey) AND (p.size = 15) AND (p.type LIKE '%BRASS') AND (s.nationkey = n.nationkey) AND (n.regionkey = r.regionkey) AND (r.name = 'EUROPE') AND (ps.supplycost = (SELECT MIN(ps.supplycost)\nFROM\n  tpch.tiny.partsupp ps\n, tpch.tiny.supplier s\n, tpch.tiny.nation n\n, tpch.tiny.region r\nWHERE ((p.partkey = ps.partkey) AND (s.suppkey = ps.suppkey) AND (s.nationkey = n.nationkey) AND (n.regionkey = r.regionkey) AND (r.name = 'EUROPE'))\n)))\nORDER BY s.acctbal DESC, n.name ASC, s.name ASC, p.partkey ASC;\n\n\n\nselect\n  cst.name as CustomerName,\n  cst.address,\n  cst.phone,\n  cst.nationkey,\n  cst.acctbal as BookedOrders,\n  cst.mktsegment,\n  nat.name as Nation,\n  reg.name as Region\nfrom tpch.sf1.customer as cst\njoin tpch.sf1.nation as nat on nat.nationkey = cst.nationkey\njoin tpch.sf1.region as reg on reg.regionkey = nat.regionkey\nwhere reg.regionkey = 1;\n\nselect\n  nat.name as Nation,\n  avg(cst.acctbal) as average_booking\nfrom tpch.sf100.customer as cst\njoin tpch.sf100.nation as nat on nat.nationkey = cst.nationkey\njoin tpch.sf100.region as reg on reg.regionkey = nat.regionkey\nwhere reg.regionkey = 1\ngroup by nat.name;\n```\n","_title":"","_margin":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_margin_tablet":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_margin_mobile":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_padding":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_padding_tablet":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_padding_mobile":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_element_width":"","_element_width_tablet":"","_element_width_mobile":"","_element_custom_width":{"unit":"%","size":"","sizes":[]},"_element_custom_width_tablet":{"unit":"px","size":"","sizes":[]},"_element_custom_width_mobile":{"unit":"px","size":"","sizes":[]},"_element_vertical_align":"","_element_vertical_align_tablet":"","_element_vertical_align_mobile":"","_position":"","_offset_orientation_h":"start","_offset_x":{"unit":"px","size":"0","sizes":[]},"_offset_x_tablet":{"unit":"px","size":"","sizes":[]},"_offset_x_mobile":{"unit":"px","size":"","sizes":[]},"_offset_x_end":{"unit":"px","size":"0","sizes":[]},"_offset_x_end_tablet":{"unit":"px","size":"","sizes":[]},"_offset_x_end_mobile":{"unit":"px","size":"","sizes":[]},"_offset_orientation_v":"start","_offset_y":{"unit":"px","size":"0","sizes":[]},"_offset_y_tablet":{"unit":"px","size":"","sizes":[]},"_offset_y_mobile":{"unit":"px","size":"","sizes":[]},"_offset_y_end":{"unit":"px","size":"0","sizes":[]},"_offset_y_end_tablet":{"unit":"px","size":"","sizes":[]},"_offset_y_end_mobile":{"unit":"px","size":"","sizes":[]},"_z_index":"","_z_index_tablet":"","_z_index_mobile":"","_element_id":"","_css_classes":"","motion_fx_motion_fx_scrolling":"","motion_fx_translateY_effect":"","motion_fx_translateY_direction":"","motion_fx_translateY_speed":{"unit":"px","size":4,"sizes":[]},"motion_fx_translateY_affectedRange":{"unit":"%","size":"","sizes":{"start":0,"end":100}},"motion_fx_translateX_effect":"","motion_fx_translateX_direction":"","motion_fx_translateX_speed":{"unit":"px","size":4,"sizes":[]},"motion_fx_translateX_affectedRange":{"unit":"%","size":"","sizes":{"start":0,"end":100}},"motion_fx_opacity_effect":"","motion_fx_opacity_direction":"out-in","motion_fx_opacity_level":{"unit":"px","size":10,"sizes":[]},"motion_fx_opacity_range":{"unit":"%","size":"","sizes":{"start":20,"end":80}},"motion_fx_blur_effect":"","motion_fx_blur_direction":"out-in","motion_fx_blur_level":{"unit":"px","size":7,"sizes":[]},"motion_fx_blur_range":{"unit":"%","size":"","sizes":{"start":20,"end":80}},"motion_fx_rotateZ_effect":"","motion_fx_rotateZ_direction":"","motion_fx_rotateZ_speed":{"unit":"px","size":1,"sizes":[]},"motion_fx_rotateZ_affectedRange":{"unit":"%","size":"","sizes":{"start":0,"end":100}},"motion_fx_scale_effect":"","motion_fx_scale_direction":"out-in","motion_fx_scale_speed":{"unit":"px","size":4,"sizes":[]},"motion_fx_scale_range":{"unit":"%","size":"","sizes":{"start":20,"end":80}},"motion_fx_transform_origin_x":"center","motion_fx_transform_origin_y":"center","motion_fx_devices":["desktop","tablet","mobile"],"motion_fx_range":"","motion_fx_motion_fx_mouse":"","motion_fx_mouseTrack_effect":"","motion_fx_mouseTrack_direction":"","motion_fx_mouseTrack_speed":{"unit":"px","size":1,"sizes":[]},"motion_fx_tilt_effect":"","motion_fx_tilt_direction":"","motion_fx_tilt_speed":{"unit":"px","size":4,"sizes":[]},"sticky":"","sticky_on":["desktop","tablet","mobile"],"sticky_offset":0,"sticky_offset_tablet":"","sticky_offset_mobile":"","sticky_effects_offset":0,"sticky_effects_offset_tablet":"","sticky_effects_offset_mobile":"","sticky_parent":"","_animation":"","_animation_tablet":"","_animation_mobile":"","animation_duration":"","_animation_delay":"","_transform_rotate_popover":"","_transform_rotateZ_effect":{"unit":"px","size":"","sizes":[]},"_transform_rotateZ_effect_tablet":{"unit":"deg","size":"","sizes":[]},"_transform_rotateZ_effect_mobile":{"unit":"deg","size":"","sizes":[]},"_transform_rotate_3d":"","_transform_rotateX_effect":{"unit":"px","size":"","sizes":[]},"_transform_rotateX_effect_tablet":{"unit":"deg","size":"","sizes":[]},"_transform_rotateX_effect_mobile":{"unit":"deg","size":"","sizes":[]},"_transform_rotateY_effect":{"unit":"px","size":"","sizes":[]},"_transform_rotateY_effect_tablet":{"unit":"deg","size":"","sizes":[]},"_transform_rotateY_effect_mobile":{"unit":"deg","size":"","sizes":[]},"_transform_perspective_effect":{"unit":"px","size":"","sizes":[]},"_transform_perspective_effect_tablet":{"unit":"px","size":"","sizes":[]},"_transform_perspective_effect_mobile":{"unit":"px","size":"","sizes":[]},"_transform_translate_popover":"","_transform_translateX_effect":{"unit":"px","size":"","sizes":[]},"_transform_translateX_effect_tablet":{"unit":"px","size":"","sizes":[]},"_transform_translateX_effect_mobile":{"unit":"px","size":"","sizes":[]},"_transform_translateY_effect":{"unit":"px","size":"","sizes":[]},"_transform_translateY_effect_tablet":{"unit":"px","size":"","sizes":[]},"_transform_translateY_effect_mobile":{"unit":"px","size":"","sizes":[]},"_transform_scale_popover":"","_transform_keep_proportions":"yes","_transform_scale_effect":{"unit":"px","size":"","sizes":[]},"_transform_scale_effect_tablet":{"unit":"px","size":"","sizes":[]},"_transform_scale_effect_mobile":{"unit":"px","size":"","sizes":[]},"_transform_scaleX_effect":{"unit":"px","size":"","sizes":[]},"_transform_scaleX_effect_tablet":{"unit":"px","size":"","sizes":[]},"_transform_scaleX_effect_mobile":{"unit":"px","size":"","sizes":[]},"_transform_scaleY_effect":{"unit":"px","size":"","sizes":[]},"_transform_scaleY_effect_tablet":{"unit":"px","size":"","sizes":[]},"_transform_scaleY_effect_mobile":{"unit":"px","size":"","sizes":[]},"_transform_skew_popover":"","_transform_skewX_effect":{"unit":"px","size":"","sizes":[]},"_transform_skewX_effect_tablet":{"unit":"deg","size":"","sizes":[]},"_transform_skewX_effect_mobile":{"unit":"deg","size":"","sizes":[]},"_transform_skewY_effect":{"unit":"px","size":"","sizes":[]},"_transform_skewY_effect_tablet":{"unit":"deg","size":"","sizes":[]},"_transform_skewY_effect_mobile":{"unit":"deg","size":"","sizes":[]},"_transform_flipX_effect":"","_transform_flipY_effect":"","_transform_rotate_popover_hover":"","_transform_rotateZ_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_rotateZ_effect_hover_tablet":{"unit":"deg","size":"","sizes":[]},"_transform_rotateZ_effect_hover_mobile":{"unit":"deg","size":"","sizes":[]},"_transform_rotate_3d_hover":"","_transform_rotateX_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_rotateX_effect_hover_tablet":{"unit":"deg","size":"","sizes":[]},"_transform_rotateX_effect_hover_mobile":{"unit":"deg","size":"","sizes":[]},"_transform_rotateY_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_rotateY_effect_hover_tablet":{"unit":"deg","size":"","sizes":[]},"_transform_rotateY_effect_hover_mobile":{"unit":"deg","size":"","sizes":[]},"_transform_perspective_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_perspective_effect_hover_tablet":{"unit":"px","size":"","sizes":[]},"_transform_perspective_effect_hover_mobile":{"unit":"px","size":"","sizes":[]},"_transform_translate_popover_hover":"","_transform_translateX_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_translateX_effect_hover_tablet":{"unit":"px","size":"","sizes":[]},"_transform_translateX_effect_hover_mobile":{"unit":"px","size":"","sizes":[]},"_transform_translateY_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_translateY_effect_hover_tablet":{"unit":"px","size":"","sizes":[]},"_transform_translateY_effect_hover_mobile":{"unit":"px","size":"","sizes":[]},"_transform_scale_popover_hover":"","_transform_keep_proportions_hover":"yes","_transform_scale_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_scale_effect_hover_tablet":{"unit":"px","size":"","sizes":[]},"_transform_scale_effect_hover_mobile":{"unit":"px","size":"","sizes":[]},"_transform_scaleX_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_scaleX_effect_hover_tablet":{"unit":"px","size":"","sizes":[]},"_transform_scaleX_effect_hover_mobile":{"unit":"px","size":"","sizes":[]},"_transform_scaleY_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_scaleY_effect_hover_tablet":{"unit":"px","size":"","sizes":[]},"_transform_scaleY_effect_hover_mobile":{"unit":"px","size":"","sizes":[]},"_transform_skew_popover_hover":"","_transform_skewX_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_skewX_effect_hover_tablet":{"unit":"deg","size":"","sizes":[]},"_transform_skewX_effect_hover_mobile":{"unit":"deg","size":"","sizes":[]},"_transform_skewY_effect_hover":{"unit":"px","size":"","sizes":[]},"_transform_skewY_effect_hover_tablet":{"unit":"deg","size":"","sizes":[]},"_transform_skewY_effect_hover_mobile":{"unit":"deg","size":"","sizes":[]},"_transform_flipX_effect_hover":"","_transform_flipY_effect_hover":"","_transform_transition_hover":{"unit":"px","size":"","sizes":[]},"motion_fx_transform_x_anchor_point":"","motion_fx_transform_x_anchor_point_tablet":"","motion_fx_transform_x_anchor_point_mobile":"","motion_fx_transform_y_anchor_point":"","motion_fx_transform_y_anchor_point_tablet":"","motion_fx_transform_y_anchor_point_mobile":"","_background_background":"","_background_color":"","_background_color_stop":{"unit":"%","size":0,"sizes":[]},"_background_color_b":"#f2295b","_background_color_b_stop":{"unit":"%","size":100,"sizes":[]},"_background_gradient_type":"linear","_background_gradient_angle":{"unit":"deg","size":180,"sizes":[]},"_background_gradient_position":"center center","_background_image":{"url":"","id":"","size":""},"_background_image_tablet":{"url":"","id":"","size":""},"_background_image_mobile":{"url":"","id":"","size":""},"_background_position":"","_background_position_tablet":"","_background_position_mobile":"","_background_xpos":{"unit":"px","size":0,"sizes":[]},"_background_xpos_tablet":{"unit":"px","size":0,"sizes":[]},"_background_xpos_mobile":{"unit":"px","size":0,"sizes":[]},"_background_ypos":{"unit":"px","size":0,"sizes":[]},"_background_ypos_tablet":{"unit":"px","size":0,"sizes":[]},"_background_ypos_mobile":{"unit":"px","size":0,"sizes":[]},"_background_attachment":"","_background_repeat":"","_background_repeat_tablet":"","_background_repeat_mobile":"","_background_size":"","_background_size_tablet":"","_background_size_mobile":"","_background_bg_width":{"unit":"%","size":100,"sizes":[]},"_background_bg_width_tablet":{"unit":"px","size":"","sizes":[]},"_background_bg_width_mobile":{"unit":"px","size":"","sizes":[]},"_background_video_link":"","_background_video_start":"","_background_video_end":"","_background_play_once":"","_background_play_on_mobile":"","_background_privacy_mode":"","_background_video_fallback":{"url":"","id":"","size":""},"_background_slideshow_gallery":[],"_background_slideshow_loop":"yes","_background_slideshow_slide_duration":5000,"_background_slideshow_slide_transition":"fade","_background_slideshow_transition_duration":500,"_background_slideshow_background_size":"","_background_slideshow_background_size_tablet":"","_background_slideshow_background_size_mobile":"","_background_slideshow_background_position":"","_background_slideshow_background_position_tablet":"","_background_slideshow_background_position_mobile":"","_background_slideshow_lazyload":"","_background_slideshow_ken_burns":"","_background_slideshow_ken_burns_zoom_direction":"in","_background_hover_background":"","_background_hover_color":"","_background_hover_color_stop":{"unit":"%","size":0,"sizes":[]},"_background_hover_color_b":"#f2295b","_background_hover_color_b_stop":{"unit":"%","size":100,"sizes":[]},"_background_hover_gradient_type":"linear","_background_hover_gradient_angle":{"unit":"deg","size":180,"sizes":[]},"_background_hover_gradient_position":"center center","_background_hover_image":{"url":"","id":"","size":""},"_background_hover_image_tablet":{"url":"","id":"","size":""},"_background_hover_image_mobile":{"url":"","id":"","size":""},"_background_hover_position":"","_background_hover_position_tablet":"","_background_hover_position_mobile":"","_background_hover_xpos":{"unit":"px","size":0,"sizes":[]},"_background_hover_xpos_tablet":{"unit":"px","size":0,"sizes":[]},"_background_hover_xpos_mobile":{"unit":"px","size":0,"sizes":[]},"_background_hover_ypos":{"unit":"px","size":0,"sizes":[]},"_background_hover_ypos_tablet":{"unit":"px","size":0,"sizes":[]},"_background_hover_ypos_mobile":{"unit":"px","size":0,"sizes":[]},"_background_hover_attachment":"","_background_hover_repeat":"","_background_hover_repeat_tablet":"","_background_hover_repeat_mobile":"","_background_hover_size":"","_background_hover_size_tablet":"","_background_hover_size_mobile":"","_background_hover_bg_width":{"unit":"%","size":100,"sizes":[]},"_background_hover_bg_width_tablet":{"unit":"px","size":"","sizes":[]},"_background_hover_bg_width_mobile":{"unit":"px","size":"","sizes":[]},"_background_hover_video_link":"","_background_hover_video_start":"","_background_hover_video_end":"","_background_hover_play_once":"","_background_hover_play_on_mobile":"","_background_hover_privacy_mode":"","_background_hover_video_fallback":{"url":"","id":"","size":""},"_background_hover_slideshow_gallery":[],"_background_hover_slideshow_loop":"yes","_background_hover_slideshow_slide_duration":5000,"_background_hover_slideshow_slide_transition":"fade","_background_hover_slideshow_transition_duration":500,"_background_hover_slideshow_background_size":"","_background_hover_slideshow_background_size_tablet":"","_background_hover_slideshow_background_size_mobile":"","_background_hover_slideshow_background_position":"","_background_hover_slideshow_background_position_tablet":"","_background_hover_slideshow_background_position_mobile":"","_background_hover_slideshow_lazyload":"","_background_hover_slideshow_ken_burns":"","_background_hover_slideshow_ken_burns_zoom_direction":"in","_background_hover_transition":{"unit":"px","size":"","sizes":[]},"_border_border":"","_border_width":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_border_width_tablet":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_border_width_mobile":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_border_color":"","_border_radius":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_border_radius_tablet":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_border_radius_mobile":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_box_shadow_box_shadow_type":"","_box_shadow_box_shadow":{"horizontal":0,"vertical":0,"blur":10,"spread":0,"color":"rgba(0,0,0,0.5)"},"_box_shadow_box_shadow_position":" ","_border_hover_border":"","_border_hover_width":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_border_hover_width_tablet":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_border_hover_width_mobile":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_border_hover_color":"","_border_radius_hover":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_border_radius_hover_tablet":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_border_radius_hover_mobile":{"unit":"px","top":"","right":"","bottom":"","left":"","isLinked":true},"_box_shadow_hover_box_shadow_type":"","_box_shadow_hover_box_shadow":{"horizontal":0,"vertical":0,"blur":10,"spread":0,"color":"rgba(0,0,0,0.5)"},"_box_shadow_hover_box_shadow_position":" ","_border_hover_transition":{"unit":"px","size":"","sizes":[]},"_mask_switch":"","_mask_shape":"circle","_mask_image":{"url":"","id":"","size":""},"_mask_notice":"","_mask_size":"contain","_mask_size_tablet":"","_mask_size_mobile":"","_mask_size_scale":{"unit":"%","size":100,"sizes":[]},"_mask_size_scale_tablet":{"unit":"px","size":"","sizes":[]},"_mask_size_scale_mobile":{"unit":"px","size":"","sizes":[]},"_mask_position":"center center","_mask_position_tablet":"","_mask_position_mobile":"","_mask_position_x":{"unit":"%","size":0,"sizes":[]},"_mask_position_x_tablet":{"unit":"px","size":"","sizes":[]},"_mask_position_x_mobile":{"unit":"px","size":"","sizes":[]},"_mask_position_y":{"unit":"%","size":0,"sizes":[]},"_mask_position_y_tablet":{"unit":"px","size":"","sizes":[]},"_mask_position_y_mobile":{"unit":"px","size":"","sizes":[]},"_mask_repeat":"no-repeat","_mask_repeat_tablet":"","_mask_repeat_mobile":"","hide_desktop":"","hide_tablet":"","hide_mobile":"","_attributes":"","custom_css":""},"defaultEditSettings":{"defaultEditRoute":"content"},"elements":[],"widgetType":"elementor-syntax-highlighter","editSettings":{"defaultEditRoute":"content","panel":{"activeTab":"content","activeSection":"content_section"}},"htmlCache":"\t\t<div class=\"elementor-widget-container\">\n\t\t\t<pre><code class='language-python'>```sql\n CREATE SCHEMA hive.logistic WITH (location = 'gs://starburst-bluetab-test/logistic');\n\nCREATE VIEW &quot;hive&quot;.&quot;logistic&quot;.&quot;shipping_priority&quot; SECURITY DEFINER AS\nSELECT\n  l.orderkey\n, SUM((l.extendedprice * (1 - l.discount))) revenue\n, o.orderdate\n, o.shippriority\nFROM\n  tpch.tiny.customer c\n, tpch.tiny.orders o\n, tpch.tiny.lineitem l\nWHERE ((c.mktsegment = 'BUILDING') AND (c.custkey = o.custkey) AND (l.orderkey = o.orderkey))\nGROUP BY l.orderkey, o.orderdate, o.shippriority\nORDER BY revenue DESC, o.orderdate ASC;\n\n\nCREATE VIEW &quot;hive&quot;.&quot;logistic&quot;.&quot;minimum_cost_supplier&quot; SECURITY DEFINER AS\nSELECT\n  s.acctbal\n, s.name SupplierName\n, n.name Nation\n, p.partkey\n, p.mfgr\n, s.address\n, s.phone\n, s.comment\nFROM\n  tpch.tiny.part p\n, tpch.tiny.supplier s\n, tpch.tiny.partsupp ps\n, tpch.tiny.nation n\n, tpch.tiny.region r\nWHERE ((p.partkey = ps.partkey) AND (s.suppkey = ps.suppkey) AND (p.size = 15) AND (p.type LIKE '%BRASS') AND (s.nationkey = n.nationkey) AND (n.regionkey = r.regionkey) AND (r.name = 'EUROPE') AND (ps.supplycost = (SELECT MIN(ps.supplycost)\nFROM\n  tpch.tiny.partsupp ps\n, tpch.tiny.supplier s\n, tpch.tiny.nation n\n, tpch.tiny.region r\nWHERE ((p.partkey = ps.partkey) AND (s.suppkey = ps.suppkey) AND (s.nationkey = n.nationkey) AND (n.regionkey = r.regionkey) AND (r.name = 'EUROPE'))\n)))\nORDER BY s.acctbal DESC, n.name ASC, s.name ASC, p.partkey ASC;\n\n\n\nselect\n  cst.name as CustomerName,\n  cst.address,\n  cst.phone,\n  cst.nationkey,\n  cst.acctbal as BookedOrders,\n  cst.mktsegment,\n  nat.name as Nation,\n  reg.name as Region\nfrom tpch.sf1.customer as cst\njoin tpch.sf1.nation as nat on nat.nationkey = cst.nationkey\njoin tpch.sf1.region as reg on reg.regionkey = nat.regionkey\nwhere reg.regionkey = 1;\n\nselect\n  nat.name as Nation,\n  avg(cst.acctbal) as average_booking\nfrom tpch.sf100.customer as cst\njoin tpch.sf100.nation as nat on nat.nationkey = cst.nationkey\njoin tpch.sf100.region as reg on reg.regionkey = nat.regionkey\nwhere reg.regionkey = 1\ngroup by nat.name;\n```\n </code></pre><script>\nif (!document.getElementById('syntaxed-prism')) {\n\tvar my_awesome_script = document.createElement('script');\n\tmy_awesome_script.setAttribute('src','https://bluetab.net/wp-content/plugins/syntax-highlighter-for-elementor/assets/prism2.js');\n\tmy_awesome_script.setAttribute('id','syntaxed-prism');\n\tdocument.body.appendChild(my_awesome_script);\n} else {\n\twindow.Prism && Prism.highlightAll();\n}\n</script>\t\t</div>\n\t\t"}]} 

En esta prueba lo más relevante es que vamos a escribir los datos de la tablas customer(15000000 rows), orders(150000000 rows), supplier(1000000 rows), nation(25 rows) y region(5 rows) en nuestro bucket de GCS.

Como comentamos anteriormente, Starburst no solo es una herramienta que te permite lanzar consultas para analizar datos, sino que también te puede ayudar en las migraciones de datos de tu compañía, volcando la información de tu base de datos a tu plataforma de la nube. Una cosa muy importante a tener en cuenta es que Starburst te permite trabajar con distintos tipos de fichero, pudiendo escribir tus tablas finales en ORC, Parquet o formatos como Delta o Hudi dándote una libertad muy amplia en las migraciones al cloud.

Como última prueba para ver que todo está funcionando correctamente, vamos a lanzar una consulta para federar distintos datos de diversas fuentes. En nuestro caso, federaremos datos de la anterior tabla que hemos creado en Google Cloud Storage llamada customer con una tabla llamada nation, que nos crearemos en el PostgreSQL que hemos configurado en nuestro despliegue, y la tabla region que está en el esquema tcph. Esta consulta la podemos encontrar en el archivo `federate.sql`:

create schema postgres.logistic;
create table postgres.logistic.nation as select * from tpch.sf1.nation;

select
  cst.name as CustomerName,
  cst.address,
  cst.phone,
  cst.nationkey,
  cst.acctbal as BookedOrders,
  cst.mktsegment,
  nat.name as Nation,
  reg.name as Region
from hive.datalake.customer as cst
join postgres.logistic.nation as nat on nat.nationkey = cst.nationkey
join tpch.sf1.region as reg on reg.regionkey = nat.regionkey
where reg.regionkey = 1;
 

Este tipo de consultas es uno de los puntos fuertes que tiene Starburst, poder federar consultas que se encuentren en distintos silos de información sin la necesidad de migrar los datos y pudiendo atacar a distintos Cloud o a información que se tenga en el onpremise. 

Una vez que hemos probado que tanto las consultas como la escritura en GCS funcionan correctamente, vamos a realizar unos test de performance para simular usuarios en paralelo y ver como autoescala nuestra plataforma. Vamos a configurar JMeter para estas pruebas. Para ello hemos tenido que configurar el conector jdbc de trino para que mande consultas a nuestro cluster.

Vamos a simular 20 usuarios en paralelo, y cada uno lanzará una secuencia de 5 consultas. Esto significa que habrá 20 consultas en paralelo al mismo tiempo, simulando un escenario real, ya que generalmente no se lanzarán consultas de todos los usuarios en el mismo momento. Las consultas que vamos a ejecutar son las siguiente:

```sql
select
  cst.name as CustomerName,
  cst.address,
  cst.phone,
  cst.nationkey,
  cst.acctbal as BookedOrders,
  cst.mktsegment,
  nat.name as Nation,
  reg.name as Region
from tpch.sf1.customer as cst
join tpch.sf1.nation as nat on nat.nationkey = cst.nationkey
join tpch.sf1.region as reg on reg.regionkey = nat.regionkey
where reg.regionkey = 1;

SELECT
  s.acctbal
, s.name SupplierName
, n.name Nation
, p.partkey
, p.mfgr
, s.address
, s.phone
, s.comment
FROM
  tpch.tiny.part p
, tpch.tiny.supplier s
, tpch.tiny.partsupp ps
, tpch.tiny.nation n
, tpch.tiny.region r
WHERE ((p.partkey = ps.partkey) AND (s.suppkey = ps.suppkey) AND (p.size = 15) AND (p.type LIKE '%BRASS') AND (s.nationkey = n.nationkey) AND (n.regionkey = r.regionkey) AND (r.name = 'EUROPE') AND (ps.supplycost = (SELECT MIN(ps.supplycost)
FROM
  tpch.tiny.partsupp ps
, tpch.tiny.supplier s
, tpch.tiny.nation n
, tpch.tiny.region r
WHERE ((p.partkey = ps.partkey) AND (s.suppkey = ps.suppkey) AND (s.nationkey = n.nationkey) AND (n.regionkey = r.regionkey) AND (r.name = 'EUROPE'))
)))
ORDER BY s.acctbal DESC, n.name ASC, s.name ASC, p.partkey ASC;

SELECT
count(*)
FROM
  tpch.sf1.customer c
, tpch.sf1.orders o
, tpch.sf1.lineitem l
WHERE ((c.mktsegment = 'BUILDING') AND (c.custkey = o.custkey) AND (l.orderkey = o.orderkey))
GROUP BY l.orderkey, o.orderdate, o.shippriority
ORDER BY o.orderdate ASC;
```
 

Si nos fijamos, en nuestro cluster de Kubernetes podemos ver que se están levantando más workers de Starburst por el momento de alta demanda en nuestra simulación:

Esto es una de las características más cómodas e importantes que nos da Starburst, ya que hace que nuestra plataforma de analítica de datos sea 100% elástica y podamos ir adaptándonos a los picos de demanda que tengamos.

Métricas

Por último, Starburst nos proporciona una interfaz donde visualizar ciertas métricas del consumo de nuestro cluster, como puede ser la memoria, la cpu o las consultas realizadas en tiempo real en nuestro cluster.

Además de estas métricas, hemos añadido también a nuestra configuración el despliegue de Prometheus y Grafana para integrarnos con las herramientas más comunes dentro de cualquier organización. Las métricas que hemos añadido a Grafana son consumo de memoria de nuestro cluster de Starburst, consultas realizadas por los usuarios, consultas con errores, memoria total de nuestro cluster de Kubernetes y Workers activos. Una vez integradas dichas métricas, el dashboard que tendríamos sería el siguiente:

Una vez integrado con Grafana, podríamos crearnos alertas de envío de mensajes por si hay algún problema en nuestro cluster de Starburst, y así tener todo el flujo de operaciones cubierto para evitarnos dolores de cabeza si hubiera algún tipo de incidencia o indisponibilidad.

El dashboard está publicado en Grafana[14] para que cualquier persona pueda hacer uso de él.

Conclusiones

Desde hace ya unos años, las grandes corporaciones se enfrentan a un desafío común cuando intentan compartir y analizar información entre departamentos ya que cada departamento almacena y gestiona sus datos de manera aislada. Estos silos dificultan el acceso y la integración de datos, lo que impide una visión completa y unificada de la información empresarial. La falta de interoperabilidad entre los silos de datos obstaculiza la toma de decisiones informada, ralentiza los procesos analíticos y limita la capacidad de las organizaciones para obtener una ventaja competitiva. Si tu organización se encuentra en una situación similar, Starburst es tu herramienta.

Starburst te facilita el acceso y análisis a todos estos silos de información y da la capacidad de federar datos de diversas fuentes y ubicaciones, ya sea datos en el Cloud o en tu datacenter onpremise. Permite realizar consultas en tiempo real sin necesidad de mover o transformar los datos previamente. Esto agiliza el proceso analítico y brinda a las organizaciones una visión 360 de sus datos. Además, no solo te ayuda a la hora de consultar datos de distintas fuentes, sino que también te puede ayudar en tus migraciones al Cloud, ya que te permite consultar cualquier origen y volcar dicha información en un almacenamiento como S3 o GCS en formato de ficheros abierto, como puede ser Parquet.

Una de las principales ventajas de Starburst, es que te permite desplegar la infraestructura en Kubernetes para aprovechar así todo su potencial. Kubernetes te da la capacidad de adaptarse dinámicamente a la carga de trabajo. Con esta función, los clústeres de Starburst pueden aumentar o disminuir automáticamente el número de Workers según la demanda. Esto permite optimizar el uso de recursos y garantizar un rendimiento óptimo, ya que los pods adicionales se crean cuando la carga aumenta y se eliminan cuando disminuye. Esto dentro de cualquier organización es un punto muy importante, ya que mejora la eficiencia operativa al minimizar el tiempo de inactividad y los costos innecesarios, al tiempo que asegura una disponibilidad constante y una respuesta ágil a los picos de trabajo. Además, una cosa a tener en cuenta es que puedes realizar la instalación de Starburst tanto en cualquiera de los Cloud, como en onpremise.

Además, también te permite tener un roleado y gobierno de los usuarios dentro de tu plataforma, dando una granularidad a nivel de acceso a los datos a cada usuario, permitiéndote crear roles para ciertos esquemas, tablas o hasta columnas y filas dentro de una tabla.

Los que trabajamos con datos sabemos de la dificultad de trabajar con multitud de fuentes de datos, entornos diversos, herramientas de todo tipo, etc. Uno de los puntos más diferenciales de Starburst es tener la capacidad de consultar los datos desde su almacenamiento, eliminando duplicidad de información, pudiendo así tener una mejor eficiencia en cuanto al storage, y facilitando también el gobierno de estos datos.

En conclusión, Starburst es una herramienta a tener en cuenta si quieres llevar a tu organización al siguiente nivel en el mundo de los datos, o si te estás planteando una estrategia de datos con una visión y una filosofía más orientada al data mesh.

Referencias

[1] Qué es Starburst.[link] 

[2] Qué es Trino. [link]

[3] Principios del Data Mesh. [link]

[4] Introducción  a DBT. [link]

[5] Introducción a Jupyter Notebook. [link]

[6] Introducción a Power BI. [link]

[7] Qué es Prometheus.. [link]

[8] Qué es Grafana. [link]

[9] Qué es Terraform. [link]

[10] Qué es Jmeter.[link]

[11] Módulo de GKE.[link]

[12] Módulo de VPC.[link]

[13] Qué es TPCH.[link]

[14] Dashboard Grafana.[link]

[15] Repositorio de Github con el despliegue.[link]

Navegación

Lucas Calvo

Cloud Engineer

¿Quieres saber más de lo que ofrecemos y ver otros casos de éxito?
DESCUBRE BLUETAB

SOLUCIONES, SOMOS EXPERTOS

DATA STRATEGY
DATA FABRIC
AUGMENTED ANALYTICS

Te puede interesar

Oscar Hernández, new CEO of Bluetab LATAM.

May 16, 2024
LEER MÁS

Data Governance: trend or need?

October 13, 2022
LEER MÁS

Myths and truths of software engineers

June 13, 2022
LEER MÁS

Snowflake Advanced Storage Guide

October 3, 2022
LEER MÁS

How much is your customer worth?

October 1, 2020
LEER MÁS

LakeHouse Streaming on AWS with Apache Flink and Hudi (Part 1)

April 11, 2023
LEER MÁS

Filed Under: Blog, Practices, Tech

CDKTF: Otro paso en el viaje del DevOps, introducción y beneficios.

May 9, 2023 by Bluetab

CDKTF: Otro paso en el viaje del DevOps, introducción y beneficios.

Lucas Calvo

Cloud Engineer

Introducción

En este artículo vamos a hablar de CDKTF y de cómo utilizar todas sus ventajas para desplegar infraestructura de forma programática y reutilizable en GCP. También veremos cómo integrar CDKTF con tus módulos de terraform[1] para desplegar infraestructura más reutilizable bajo la supervisión de tu organización.

CDKTF abre un mundo de posibilidades para llevar a nuestra organización al siguiente nivel de automatización, además de facilitar el despliegue de la infraestructura a las personas más cercanas a la parte de desarrollo. En este artículo daremos algunas indicaciones de cuando es una buena opción utilizar CDKTF y cuando seguir utilizando terraform a través de HCL, ya que no en todos los casos de usos el CDKTF nos aportará un valor añadido.

¿Qué necesitas para entender este artículo?

  • Algunos conceptos sobre Terraform[2].
  • Instalar el CDKTF [3].
  • Algunos conceptos sobre python.
  • Necesitas una cuenta gratuita en GCP.

Todo el código utilizado en este artículo está en el repositorio[4] de Github.

¿Es CDKTF la solución milagrosa para los despliegues en nuestra organización? Veámoslo.

¿Que es el CDKTF?

CDKTF, también llamado Cloud Development Kit for Terraform, permite definir y aprovisionar infraestructura de forma programática. En este artículo utilizaremos python para desplegar algunos recursos en GCP. El punto fuerte de CDKTF es que no necesitas aprender HashiCorp Configuration Language (HCL), sólo necesitas saber Python que es más flexible que HCL porque te permite crear más integraciones con herramientas de tu organización y con otras APIs. Incluso puedes crear algunas clases específicas en Python para hacer tu código más reutilizable.

Primeros pasos con CDKTF

Una vez explicado CDKTF, procederemos a crear nuestro primer proyecto. Para ello desplegaremos un cloud storage y un topic de pubsub en GCP, utilizaremos recursos terraform por simplicidad. Comenzaremos explicando varios comandos del CDKTF:

  • cdktf init –template=python

Este comando crea un nuevo proyecto CDK para Terraform usando una plantilla. Esto es muy útil cuando se quiere empezar a utilizar un nuevo proveedor, en nuestro caso el proveedor de Google.

Una vez ejecutado este comando veremos la siguiente plantilla:

Los ficheros más importantes son `main.py` y `cdktf.json`. Hablemos de ellos.

En el fichero `main.py` es donde se declara toda la infraestructura que vamos a desplegar con su lógica. Haremos uso del proveedor de Google para definir nuestros recursos, `cloud storage` y `pubsub topic`. Luego para definir e importar el proveedor de google y la librería de almacenamiento y pubsub importaremos los siguientes módulos en python:

```python
from imports.google.provider import GoogleProvider
from imports.google.storage_bucket import StorageBucket
from imports.google.pubsub_topic import PubsubTopic
``` 

Estos proveedores se definen en el archivo `cdktf.json`, este archivo es donde puedes proporcionar los ajustes de configuración personalizados para tu aplicación y definir los proveedores y módulos que deseas utilizar. Cuando inicializamos la plantilla con el comando `cdktf init –template=python`, la plantilla genera un archivo `cdktf.json` básico en tu directorio raíz que puedes personalizar para tu aplicación.

Este archivo tiene la siguiente información:

```json
{
  "language": "python",
  "app": "pipenv run python main.py",
  "projectId": "da305019-c0fc-4e47-b4ad-1a705cdd8811",
  "sendCrashReports": "false",
  "terraformProviders": ["google@~> 4.0"],
  "terraformModules": [],
  "codeMakerOutput": "imports",
  "context": {
    "excludeStackIdFromLogicalIds": "true",
    "allowSepCharsInLogicalIds": "true"
  }
}
``` 

En la línea terraformProviders hemos definido el proveedor de google que contiene todos los recursos que necesitamos. En la sección Integración con tus propios módulos aprenderemos a configurar este fichero para utilizar tus propios módulos terraform.

Una vez configurados los proveedores ya podemos definir nuestros recursos con Python:

```python
class MyStack(TerraformStack):
    def __init__(self, scope: Construct, id: str):
        super().__init__(scope, id)

        GoogleProvider(self, "google", region="europe-west4",project="xxxxx")
        length = 5
        suffix = ''.join((random.choice(string.ascii_lowercase) for x in range(length)))
        bucket = StorageBucket(self, "gcs", name = "cdktf-test-1234-bt-"+ str(suffix), location = "EU", force_destroy = True)
        topic = PubsubTopic(self, "topic" ,name = "cdktf-topic", labels={"tool":"cdktf"})
        TerraformOutput(self,"bucket_self_link",value=bucket.self_link)
        TerraformOutput(self,"topic-id",value=topic.id)

app = App()
MyStack(app, "first_steps")

app.synth()
``` 

Estas líneas de código despliegan un cloud storage y un topic como hemos dicho previamente, también hemos creado un `string` aleatorio en python para añadir al cloud storage como sufijo. Para ello hemos añadido dos librerías más: `string` y `random`. Además, hemos añadido a nuestro script algunas salidas para ver alguna información importante sobre nuestro despliegue como `topic_id` o `bucket_self_link`.

El resultado final de nuestros primeros scripts con CDKTF es el siguiente:

```python
from constructs import Construct
from cdktf import App, TerraformStack, TerraformOutput
from imports.google.provider import GoogleProvider
from imports.google.storage_bucket import StorageBucket
from imports.google.pubsub_topic import PubsubTopic
import random
import string

class MyStack(TerraformStack):
    def __init__(self, scope: Construct, id: str):
        super().__init__(scope, id)

        GoogleProvider(self, "google", region="europe-west4",project="xxxxx")
        length = 5
        suffix = ''.join((random.choice(string.ascii_lowercase) for x in range(length)))
        bucket = StorageBucket(self, "gcs", name = "cdktf-test-1234-bt-"+ str(suffix), location = "EU", force_destroy = True)
        topic = PubsubTopic(self, "topic" ,name = "cdktf-topic", labels={"tool":"cdktf"})
        TerraformOutput(self,"bucket_self_link",value=bucket.self_link)
        TerraformOutput(self,"topic-id",value=topic.id)

app = App()
MyStack(app, "first_steps")

app.synth()
``` 

Ahora podemos desplegar nuestra infraestructura, para ello necesitamos ejecutar algunos comandos con CDKTF. En primer lugar, tenemos que descargar los proveedores y módulos para una aplicación y generar las construcciones CDK para ellos. Para ello utilizamos `cdktf get`. Utiliza el archivo de configuración `cdktf.json` para leer la lista de proveedores. Este comando sólo genera los bindings de los proveedores que faltan, por lo que es muy rápido si nada ha cambiado.

```bash
cdktf get
``` 

Esta es la salida del comando:

Usamos el flag –force para recrear todos los bindings. Con el proveedor descargado procederemos al despliegue ejecutando el comando `cdktf deploy`:

```bash
cdktf deploy
``` 

Esta es la salida del comando:

Con todos estos pasos hemos procedido a desplegar nuestra primera aplicación con el CDKTF. Algo bastante sencillo y con código muy reutilizable. Ahora vamos a proceder a la destrucción de la infraestructura para no incurrir en ningún coste. Utilizaremos el comando `cdktf destroy`.

Integraciones con tus propios módulos

Perfecto, una vez comprobado cómo funciona el CDKTF vamos a integrarlo con los módulos terraform que se desarrollan en nuestra empresa. Esto nos permitiría hacer el código mucho más reutilizable permitiendo que todo lo que se despliegue en el CDKTF se despliegue con los patrones que hemos definido en los módulos. Para esta prueba ejecutaremos la misma creación (gcs y topic) pero esta vez haciendo uso de los módulos previamente desarrollados que podéis encontrar en el siguiente repositorio.

  • Cloud Storage[5]
  • Pubsub[6]

Estos módulos han sido desarrollados con HCL y tienen ciertas nomenclaturas y lógica para facilitar al máximo el despliegue al resto de desarrolladores de mi organización.

Así que procedamos a crear otra plantilla con el comando `cdktf init –template=python` pero esta vez para usar nuestros propios módulos.

Una vez ejecutado tenemos la misma plantilla que en el apartado anterior. Ahora vamos a proceder a modificar el `cdktf.json` para añadir los módulos que vamos a utilizar y dos proveedores, google y google-beta, que son necesarios para el uso de estos módulos.

Este es el fichero `cdktf.json`:

```json
{
  "language": "python",
  "app": "pipenv run python main.py",
  "projectId": "f02a016f-d673-4390-86db-65348eadfb3f",
  "sendCrashReports": "false",
  "terraformProviders": ["google@~> 4.0", "google-beta@~> 4.0"],
  "terraformModules": [
    {
      "name": "gcp_pubsub",
      "source": "git::https://github.com/lucasberlang/gcp-pubsub.git?ref=v1.2.0"
    },
    {
      "name": "gcp_cloud_storage",
      "source": "git::https://github.com/lucasberlang/gcp-cloud-storage.git?ref=v1.2.0"
    }
  ],
  "codeMakerOutput": "imports",
  "context": {
    "excludeStackIdFromLogicalIds": "true",
    "allowSepCharsInLogicalIds": "true"
  }
}
```
 

Hemos añadido la línea terraform Modules donde indicamos el nombre del módulo y la fuente, en este caso nuestro repositorio de github. También hemos añadido la línea terraform providers como en el apartado anterior.

Una vez añadidos los proveedores y los módulos terraform vamos a instanciarlos en nuestro main, para ello solo tenemos que añadirlos como librerías y luego invocarlos con los parámetros que estén definidos en nuestro módulo. Puedes ir al readme del módulo que está subido en github para ver que parámetros son obligatorios y cuales son opcionales, también puedes ver salidas de esos módulos.

El código quedaría de la siguiente manera:

```python
#!/usr/bin/env python
from constructs import Construct
from cdktf import App, TerraformStack, TerraformOutput
from imports.google.provider import GoogleProvider
from imports.google_beta.provider import GoogleBetaProvider
from imports.gcp_pubsub import GcpPubsub
from imports.gcp_cloud_storage import GcpCloudStorage
import random
import string

class MyStack(TerraformStack):
    def __init__(self, scope: Construct, ns: str):
        super().__init__(scope, ns)
        GoogleProvider(self, "google", region="europe-west4")
        GoogleBetaProvider(self, "google-beta", region="europe-west4")
        length = 5
        suffix = ''.join((random.choice(string.ascii_lowercase) for x in range(length)))
        tags = {"provider" : "go",
                "region" : "euw4",
                "enterprise" : "bt",
                "account" : "poc",
                "system" : "ts",
                "environment" : "poc",
                "cmdb_name" : "",
                "security_exposure_level" : "mz",
                "status" : "",
                "on_service" : "yes"}

        topic = GcpPubsub(self,"topic",
          name = "cdktf-topic",
          project_id = "xxxxxxx",
          offset = 1,
          tags = tags)
          
        bucket = GcpCloudStorage(self,"bucket",
          name = "cdktf-test-1234-bt-" + suffix,
          project_id = "xxxxxxx",
          offset = 1,
          location = "europe-west4",
          force_destroy = True,
          tags = tags)
        
        TerraformOutput(self,"topic_id",value=topic.id_output)
        TerraformOutput(self,"bucket_self_link",value=bucket.bucket_output)

app = App()
MyStack(app, "cdktf_modules")

app.synth()
```
 

Para invocar nuestros módulos que hemos añadido previamente en el archivo `cdktf.json`, sólo tenemos que añadir este código:

```python
from imports.gcp_pubsub import GcpPubsub
from imports.gcp_cloud_storage import GcpCloudStorage
``` 

El resto del código es la invocación de nuestros módulos con una serie de parámetros para inicializarlos, como región, nombre, etc. También hemos añadido las salidas para tener algo de información sobre la creación de los recursos en GCP. Ahora, vamos a proceder al despliegue de los recursos para comprobar el correcto funcionamiento de CDKTF.

```bash
cdktf get --force
cdktf deploy
``` 

Una vez desplegada, comprobaremos nuestra infraestructura en GCP y procederemos a borrar toda con el comando `cdktf destroy`.

Evoluciones que puedes añadir a tu empresa

Gracias al CDKTF podemos crear nuevos automatismos mucho más nativos que con el HCL tradicional ya que podemos integrarnos con todo tipo de backend en nuestro propio desarrollo. Esto abre todo un nuevo mundo de posibilidades en el despliegue automático de infraestructuras.

Por ejemplo, si en tu empresa siempre te piden el mismo tipo de infraestructura desde los equipos de desarrollo, como una base de datos, un cluster kubernetes y luego los componentes de seguridad y comunicaciones asociados al caso de uso, ¿por qué no automatizar este proceso y no crear proyectos terraform a la carta?.

Podemos evolucionar nuestra plataforma de automatización creando un portal web que invoque a nuestro microservicio hecho con el CDKTF que hará las validaciones oportunas y luego procederá al despliegue. Esto también se podría hacer con terraform pero no de una forma tan nativa como con el CDKTF ya que ahora usando python (u otro lenguaje, Typescript, Go etc…) podemos crear flujos de trabajo mucho más complejos llamando a otros backends y haciendo todo tipo de integraciones con nuestras herramientas corporativas. Podríamos generar una plataforma de despliegue para automatizar todos nuestros despliegues genéricos que nos solicitan desde otros equipos como aplicaciones, analítica de datos, reporting, etc. Podríamos crear la siguiente arquitectura para resolver este problema:

Conclusiones

Después de haber trabajado varios años con terraform creo que el CDKTF es su evolución natural, aunque todavía está en una fase prematura. No cuenta con una comunidad tan grande como la que terraform tiene con HCL, lo que hace difícil iniciarse con esta herramienta. Depurar el código suele ser complicado y no tan fácil como con HCL. Los tutoriales oficiales no son muy completos por lo que muchas veces tendrás que encontrar tu propio camino para resolver algunos problemas derivados del uso de CDKTF. También creo que el CDKTF está en un punto de madurez como lo estaba terraform hace años en la versión inferior a la 0.11.0, es decir, funciona bien aunque todavía le queda mucho camino por recorrer.

Creo que si tu empresa ya utiliza terraform (HCL) de forma madura, cambiar el modelo a CDKTF no va a suponer grandes beneficios. El único beneficio de usar CDKTF es en un caso de uso como el mencionado en la sección anterior, donde puedes mezclar el uso de tus módulos ya desarrollados con HCL y CDKTF para llevar la automatización de cierta infraestructura a un nivel superior.

Por otro lado, CDKTF es una herramienta que podría recomendar si conoces python (u otros lenguajes) y no quieres aprender un lenguaje específico como HCL. CDKTF puede ser una buena herramienta si tu empresa no está en un punto de madurez avanzado con terraform o cualquier herramienta de IaC. El CDKTF te permite desarrollar de una forma más sencilla tu infraestructura como código, las integraciones con otras herramientas dentro de tu organización serán mucho más sencillas ya que podrás utilizar tu lenguaje de programación favorito para realizarlas. Puede crear clases y módulos reutilizables de forma sencilla, creando una comunidad de desarrollo CDKTF dentro de su propia empresa y permitiendo a los desarrolladores estar más apegados a la infraestructura, lo que siempre es un reto. También la parte de pruebas de tu código CDKTF será mucho más fácil y nativa haciendo uso de pytest u otros frameworks [7]. Probar con terraform (HCL) es más tedioso y ya tienes que usar frameworks como terratest para integrarlos en tu código.

En general creo que CDKTF es una buena herramienta y es la evolución natural de Terraform. Si queremos llevar nuestra automatización a otro nivel e integrarla con portales web o herramientas organizativas, CDKTF es la herramienta que necesitamos. También abre un mundo de posibilidades para los equipos de desarrollo, ya que podrán desplegar cualquier tipo de infraestructura utilizando un lenguaje de programación. Habrá que ver cómo evoluciona para ver cómo encaja en nuestras organizaciones y si alcanza el punto de madurez que ha alcanzado Terraform.

Referencias

[1] Ques es terraform.[link]

[2] Módulos de Terraform. [link]

[3] Guía de instalación del CDKTF. [link]

[4] Repositorio de CKDTF GitHub. [link]

[5] Repositorio de Cloud storage GitHub. [link]

[6] Repositorio de Pubsub GitHub. [link]

[7] Frameworks de testing.. [link]

Navegación

Lucas Calvo

Cloud Engineer

¿Quieres saber más de lo que ofrecemos y ver otros casos de éxito?
DESCUBRE BLUETAB

SOLUCIONES, SOMOS EXPERTOS

DATA STRATEGY
DATA FABRIC
AUGMENTED ANALYTICS

Te puede interesar

Spying on your Kubernetes with Kubewatch

September 14, 2020
LEER MÁS

Bluetab is certified under the AWS Well-Architected Partner Program

October 19, 2020
LEER MÁS

Databricks on AWS – An Architectural Perspective (part 1)

March 5, 2024
LEER MÁS

Azure Data Studio y Copilot

October 11, 2023
LEER MÁS

El futuro del Cloud y GenIA en el Next ’23

September 19, 2023
LEER MÁS

Mi experiencia en el mundo de Big Data – Parte I

October 14, 2021
LEER MÁS

Filed Under: Blog, Practices, Tech

LakeHouse Streaming on AWS with Apache Flink and Hudi (Part 1)

April 11, 2023 by Bluetab

LakeHouse Streaming on AWS with Apache Flink and Hudi (Part 1)

Alberto Jaen

AWS Cloud Engineer

Alfonso Jerez

AWS Cloud Engineer

Adrián Jiménez

AWS Cloud Engineer

Introduction

Every day the ingestion and processing of Near Real Time (NRT) data streams becomes more necessary. Business requirements are becoming more demanding in terms of processing times and availability of the latest data and this article aims to address this issue.

Using the AWS cloud and a serverless approach, this article will deploy an application capable of ingesting data streams and processing them in NRT, writing their result in a

LakeHouse in such a way that ACID (Atomic, Consistent, Isolated and Durable) operations can be performed on them. An architecture will be deployed in which data is ingested with Locust, processed with Flink and finally written in Hudi and JSON formats.

Locust is a Python framework to perform Load Testing in an easy and scalable way. The advantages offered by Locust are the ability to define this user behavior with a general purpose language and its ease of scalability.

Flink has become a reference framework in the field of distributed processing on data streams. It is characterized by its stream processing orientation (although it can also execute batch processes), its processing speed and its memory efficiency. There are other popular frameworks in the industry, such as Spark Streaming and Storm, the architecture section will discuss why Flink was ultimately chosen.

Finally, Hudi is a transactional file format that provides the capabilities of a database and DataWarehouse to the Data Lake. Hudi gives the ability to leave behind the concepts of batching and replace it with an incremental processing perspective. Like the other technologies used in this article, it is described in detail below.

All the code used in this article, both IaC and Python, can be found in our repository[1] on Github.

In future articles

Multiple articles will use this one as a basis for discussing the following topics:

  • Comparison in terms of processing efficiency, writing and reading files and costs in JSON vs Hudi.
  • Comparison of MOR vs COW, in addition to the consumption of these tables by the different types of queries (Snapshot, Read Optimized, Incremental).
  • Scalability.
  • Other forms of data mining, such as Redshift or Pinot.

Architecture

Below you can see the high-level architecture that will be deployed:

As you can see, Locust is used as a Load Testing tool to send synthetic data to our application. These will be ingested through a Kinesis Stream provisioned in On Demand mode, so the stream will scale automatically. The alternative to the On Demand mode is the Provisioned mode, where we must specify the number of shards (component in which the stream is divided), with which we want to provision the stream. The differences and particularities of these two modes will be explained in more detail in the Kinesis section.

The input stream is read by two Kinesis Analytics Flink applications. As mentioned in the next steps section, the reason to have two independent applications writing in Hudi and JSON respectively is to make a comparison in future articles in terms of efficiency. Finally the data will be hosted in S3, the AWS object storage service.

The particularity of the Kinesis Analytics Flink application is that it is serverless, that is, it abstracts the developer from the complexity of configuring and deploying a Flink cluster. This application must be assigned KPUs or Kinesis Processing Units and a jar with the Flink library and the necessary connectors to be able to deploy it correctly. All these concepts will be explained in the following sections.

The alternative to this serverless perspective with a managed service on AWS is the complete administration of the application by the developer, who can use tools such as Kubernetes or EKS (Kubernetes managed on AWS) to deploy this Flink application in a cluster. The advantages of this second alternative would be to be able to configure both the cluster (number of nodes, memory, CPU, hard disk, etc…) and the Flink application (disaster recovery management, metadata management, etc…) with a much greater degree of detail. In this article, the first alternative was chosen because of its simplicity and ease of use when learning about the Flink framework.

Locust

The first piece in the data ingestion pipeline is the Locust component written in Python. Unlike other frameworks available on the market such as JMeter, Locust gives us the ability to write simple code with Python instead of using a domain-specific language or user interface.

In addition, Locust is event-driven and uses greenlet[2], which gives it the ability to manage the capacity of several thousand users with a single processor thread. For example, in the case of JMeter, one thread is needed for each user, which poses a scalability problem for cases where a high number of users are needed.

Locust has several possibilities when it comes to running and scaling, being able to run locally for less data-intensive applications or deploy to a Kubernetes cluster by creating a Docker image from Locust code.

As for clients and systems to send data to, Locust provides a built-in HTTP client. In case you want to send events to other systems, like the one in this article, you can always write a custom client thanks to the advantage of being a Python framework.

In addition, Locust also provides a web interface so that you can check the progress of your data submission in real time. For all these reasons it has been decided to use this technology in this article.

Kinesis Data Analytics

For data ingestion, Kinesis Data Streams, a fully managed and serverless data streaming service offered by AWS, will be used. A Kinesis Stream consists of a logical grouping of shards, which represent the fundamental unit of capacity of a stream and are processed in parallel. Each shard provides the stream with 1 MB/s or 1,000 events per second write and 2 MB/s read. The events will be distributed among the stream shards according to their partitioning key, so it is important that the partitioning is homogeneous to avoid a bias in the distribution and occurrence of hot shards. There are two modes of capacity provisioning:

  • On Demand – the number of shards is automatically managed to accommodate the load, ensuring optimal performance without the need for manual adjustments.
  • Provisioned – you must specify the number of shards for the stream based on the expected load.

For simplicity, and because it is suitable for our use case, we will opt for the On Demand mode. This will automatically accommodate the number of shards to the amount of data generated by our Locust application.

To read and process the data ingested through Kinesis Data Streams, another service of the Kinesis family, Kinesis Data Analytics (KDA), will be used. This service is offered in two flavors:

  • Kinesis Analytics SQL – Enables the creation of streaming data processing applications using SQL. This service is considered deprecated in favor of the KDA for Apache Flink service.
  • Kinesis Analytics for Apache Flink – Provides a way to deploy a Flink cluster managed by AWS. Using Flink empowers the creation of more advanced and better performing applications.

A Flink application consists of a series of parallel processing tasks, also known as operators, which are connected in a Directed Acyclic Graph (DAG). The data stream is processed by this DAG, with each operator performing a specific operation on the data.

KDA allocates computing power for our application in the form of Kinesis Processing (KPUs), each equivalent to 1 vCPU and 4GB of RAM. The number of KPUs for the application is determined by specifying two parameters:

  • Parallelism – Number of tasks that can be executed concurrently.
  • ParallelismPerKPU – Number of tasks that can run on a single KPU.

The total number of KPUs of the application is given by Parallelism / ParallelismPerKPU. It is possible to deploy this service with automatic autoscaling, which will automatically adjust the number of KPUs based on CPU consumption to accommodate demand.

Figure 1. KDA configuration with Parallelism 4 and ParallelismPerKPU 2

The costs[3] of Amazon Kinesis Analytics are based on a pay-per-use model, based on the Kinesis Processing Units consumed. In addition, a cost is assumed for the storage used by the application and its backups.

Flink

Delving deeper into the Flink application, one of the most important features is the ability to be resilient to failures. To this end, Flink incorporates a checkpointing system whereby a snapshot of the application and its state is taken and stored in remote storage in case the application needs to be recovered.

The checkpointing process of a Flink application is designed to be resilient and efficient. Flink can make use of different backends to store the state of the application. The simplest would be the Java Virtual Machine’s own memory, and while this offers low latency and simpler management, scaling and capacity issues can quickly arise that make it undesirable for production environments. This is why it is common to use RocksDB as a backend for Flink, a high-performance, scalable and fault-tolerant key-value database. Additionally KDA stores these snapshots in S3 for an extra layer of durability.

For the purpose of this blog, a simple application has been developed for real-time data ingestion and subsequent saving to S3. Flink offers two APIs through which you can develop an application:

  • DataStream API – It is an API based on the concept of streams. It offers low-level control of the application with the disadvantage of requiring more effort from the developer.
  • Table API – This API is based on the concept of tables. It provides a declarative way to develop the application by using SQL expressions. It leads to a loss of control over the details of the application in favor of being much simpler.

For this use case the Table API will be used for its simplicity, but it is equally compatible with the use of the DataStream API.

Deploying the application with Kinesis Data Analytics requires only to define the entry point of the application code and provide an uber jar with all the application dependencies. It is fitting to explain the dependencies used for this application, as it is usually one of the major pain points when developing a Flink application:

  • SQL connector for Kinesis – Fundamental connector for our Flink application to be able to read from a Kinesis Stream.
  • S3 Filesystem for Hadoop – Allows the application to operate on top of S3.
  • Hudi Bundle – Package provided by Hudi developers, with all the necessary dependencies to work with the technology.
  • Hadoop MapReduce Client Core – Additional dependency required for writing to Hudi to work correctly in KDA. It is possible that in future versions of the Hudi Bundle this dependency will not be needed.

The application is prepared to write data both in JSON format and in Hudi MoR or CoW tables (which will be explained in detail in the next section). Both the application code and the infrastructure are available in the repository.

Hudi

Concepts

Hudi is presented as a source of Open Source storage at the data format level. Like other solutions such as Iceberg or Delta Lake, it offers some of their existing properties such as ACID (Atomicity, Consistency, Isolation and Durability) transaction support, processes focused on optimizing read/write tasks, incremental data updates and others that will be explained below. It is important to highlight that these could not be achieved by means of Avro and Parquet format files.

Hudi’s features are as follows:

  • ACID transactions: One of the main advantages offered by Apache Hudi is the support for ACID transactions, enabling write operations to be atomic and consistent. It also provides data isolation and durability, ensuring data integrity and system consistency. How the various forms of storage make this possible and the advantages they offer will be discussed in more detail later.
  • Incremental Pipelines: the clustering of events based on business variables allows data deletion/update tasks to be performed more efficiently if they are indexed together even if they have not occurred in the same time frame.
  • Streaming Ingest: Hudi allows to obtain computationally lighter workloads through Upserts that resort to an optimized indentation[4] by file groups, which makes writing tasks (Update/Append/Delete) more efficient. This allows many Hudi-based applications not to be deduplicated.
  • Queries of previous data states – Time Travel: Hudi allows updating and consulting information from past partitions without the need to reprocess or include major temporary partitions. This ensures that events sent later are not processed and are correctly stored.
  • Concurrent write tasks: by means of OCC (Optimistic Concurrency Control[5]), many of the tasks such as Upsert and Insert can be performed correctly even if they are performed simultaneously.

When analyzing how Hudi proceeds to store the ingested events, these are grouped by partitions and these in turn are grouped into groups of files. The latter are assigned a unique file_id for each group in which the base file is found, in parquet format, which arises after an action, either a commit or compaction, and the log file which is where all the updates are registered (event version tracking).

Table Types and Queries

Hudi offers 2 types of tables depending on the business need, this has an impact in terms of performance and limitation of certain functionalities as we will see in more detail:

Copy on Write (COW)

A storage system whereby the tasks of updating, deleting or recording new data are performed directly on the log file (delta file) and a new snapshot is created that includes a complete copy of the updated dataset, including a new version of the base file and a delta file containing the changes made in that operation.

It is not until data compacting (scheduled or upon reaching a defined data size) that the delta files are combined with the most recent version of the complete dataset, creating a new complete file where the delta files that are no longer needed are removed and the index file is updated so that it can access the data in the compacted file.

This storage system is especially recommended for use cases where read tasks are more frequent than write tasks as it does not require additional data transformations when reading data.

The Timeline of the main files is shown below when the various writing tasks are performed:

task NEW Base File Delta File Index File Snapshot
New event
The record is written to the base file
No delta file is created
The index file is updated with the new record
No new snapshot is created
Updating existing registration
The updated record is written to a new delta file
the updated record is written to the corresponding delta file
The index file is updated with the updated version of the registry
No new snapshot is created
De-registration
Record is not deleted form the base file
A deletion flag is written to a new delta file
The index file is updated with the deletion flag
No new snapshot is created
Compacting delta file
The delta file are merged into a new base file
A new delta file is created containing the pending updates after the last compacting
A new index file is created containing all index entries of the merged files
A new snapshot is created reflecting the current state of the data after compaction

Merge On-Read (MOR)

In this case, separate delta files are not used as in the Copy-on-Write (COW) model. Instead, changes are written directly to the existing data files (base files). In tasks where record updates are performed, these new records are added to the base file, and in the case of deletions, these are marked as such in the base file, in both cases these changes are recorded in the index file, until compaction is performed. It is in this operation that all updates are applied to the records in the corresponding base file and deletes the previous versions of the updated records.

This alternative is specialized in performing queries of versioned historical data and NRT transformations and analysis of large volumes, since it is possible to do so without having to copy the data to another location on disk. In addition to being optimal for use cases where write tasks are concurrent as it is more efficient since it is not necessary to perform additional data transformations during the write, although it has a lower tolerance to failure since in case the log file is corrupted it can generate loss of data versions.

The Timeline of the main files is shown below when the various writing tasks are performed:

Task NEW Base File Delta File Index File Snapshot
New event
The record is written to the new base file
No delta file is created
The index file is updated with the new record
No new snapshot is created
Updating existing registration
The updatad record is written to the new base file
The updated record is written to a new delta file
The index file updated with the updated version of the registry
No new snapshot is created
De-registration
The deleted record is not written to the new base file
A deletion flag is written to a new delta file
The index file is updated with the deletion flag
No new snapshot is created
Compacting delta files
The delta file is merged into the new base file
No new delta file is created
A new index file is created containing all index entries of the merged files
A new snapshot is created reflecting the current state of the data after compaction

As a summary, a comparison of the main performance metrics between Copy on-Write and Merge on-Read is made:

COW MOR
Writing cost

Higher

Lower

Latency

Higher

Lower

Query Performance

Lower

Slower before compaction

Igual tras compactación

  • Write: COW has a higher write cost than MOR because each time a write operation is performed (either adding a new record or updating an existing one), a new delta file is created and the corresponding index files must be updated. In MOR, on the other hand, records are written directly to the base file, which means fewer write operations and therefore a lower cost in terms of performance and resource usage.
  • Latency: COW has a lower data latency than MOR because new or updated records are first written to a separate delta file, instead of directly updating the base file as in MOR.
  • Query times: COW has a shorter query time than MOR because in COW, the updated data is stored in the Delta Files and the original data is kept in the Base File. This means that no read operation is required to get the updated version of the data.

Hudi not only offers different forms of storage, but also different ways of querying the stored information, again depending on both the business cases and the type of storage chosen:

  • Snapshots: queries the latest version coming from a commit or compaction. Thanks to this type of queries, it is possible to obtain the versions of the data at specific times thanks to the combination of the base and delta file (time travel). Same performance in CoW and MoR.
  • Read Optimized: only available if the type of table in which the data is stored is MoR. Based on obtaining optimized views for reading a large and distributed data set. This is achieved by means of optimized indexing (Bloom Filter Index), which considerably reduces data search time. In addition, it also relies on data compaction, which again makes search tasks less costly by reducing the volume of data.
  • Incremental: Allows to read only the data updated or added since the last query. This helps to reduce reading time and disk storage usage.

Conclusions

In this article we have described how to deploy an application that ingests events in real time and forms a LakeHouse with a serverless architecture. With this we have sought an intermediate level of abstraction so that it is a simple application but with enough power to be able to be used in real production environments.

Deploying applications based on the combination of technologies such as Apache Flink and Hudi provides the ability to process large volumes of data in real time and in a scalable manner. This, combined with the guarantee provided by ACID transactions, makes the combination of Apache Flink and Apache Hudi a solid solution for data ingestion and processing in critical environments.

In spite of all the advantages described above, it is worth mentioning some drawbacks that have been detected in the development of this architecture. The biggest problem encountered has been the resolution of dependencies between Flink libraries and the necessary connectors, such as Hudi. The lack of community that exists today, although this will grow over time, was a considerable initial problem to be able to form the final package with all the necessary dependencies without conflicts between them. In addition, it is worth noting that less community has been perceived for the Python language than for Java or Scala. In this article Python was chosen as there was a stronger internal knowledge but in the case that the technology stack is closer to languages supported by the JVM (Java Virtual Machine) it would be advisable to use Scala or Java.

In the next articles we will go into more detail on the particularities that both Hudi and Flink have in order to customize and adjust the behavior of this application depending on the needs of our use case.

References

[1] Github Flink-Hudi (Terraform) repository. [link]

[2] Greenlet 2.0.2. Documentation [link] (February 28, 2023)

[3] Amazon Kinesis Data Analytics Costs. [link] (March 23, 2022)

[4] Hudi Optimized Indexing. [link] (September 23, 2021)

[5] Hudi Writing Concurrency. [link] (September 23, 2021)

Autores

Alberto Jaen

AWS Cloud Engineer

Empecé mi carrera laboral con el desarrollo, mantenimiento y administración de bases de datos multidimensionales y Data Lakes. A partir de ahí comencé a estar interesado en plataformas de datos y arquitecturas cloud, estando certificado 3 veces en AWS y 2 con Hashicorp.

Actualmente me encuentro trabajando como un Cloud Engineer desarrollando Data Lakes y DataWarehouses con AWS para un cliente relacionado con la organización de eventos deportivos a nivel mundial.

Alfonso Jerez

AWS Cloud Engineer

Comencé mi carrera como Data Scientist en distintos sectores (banca, consultoría,…) enfocado en la automatización de procesos y desarrollo de modelos. En los últimos años aposté por Bluetab motivado por el interés en especializarme como Data Engineer y comenzar a trabajar con los principales proveedores Cloud (AWS, GPC y Azure) en clientes como Olympics, específicamente en la optimización del procesamiento y almacenamiento del dato.

Colaborando activamente con el grupo de Práctica Cloud en investigaciones y desarrollo de blogs de tecnologías punteras e innovadoras tales como esta, fomentando así el continuo aprendizaje.

Adrián Jiménez

AWS Cloud Engineer

Dedicado al aprendizaje constante de nuevas tecnologías y su aplicación, disfrutando de utilizarlas en la resolución de desafíos tecnológicos. Desarrollo mi carrera como Cloud Engineer diseñando, implementando y manteniendo infraestructura en AWS.

Colaboro activamente en la Práctica Cloud, donde investigamos y experimentamos con nuevas tecnologías, buscando soluciones para los retos que enfrentan nuestros clientes.

Navegation

¿Quieres saber más de lo que ofrecemos y ver otros casos de éxito?
DESCUBRE BLUETAB

SOLUCIONES, SOMOS EXPERTOS

DATA STRATEGY
DATA FABRIC
AUGMENTED ANALYTICS

Te puede interesar

5 common errors in Redshift

December 15, 2020
LEER MÁS

Essential features to consider when adopting a cloud paradigm

September 12, 2022
LEER MÁS

Big Data and loT

February 10, 2021
LEER MÁS

Serverless Microservices

October 14, 2021
LEER MÁS

Leadership changes at Bluetab EMEA

April 3, 2024
LEER MÁS

Workshop Ingeniería del caos sobre Kubernetes con Litmus

July 7, 2021
LEER MÁS

Filed Under: Blog, Practices, Tech

Snowflake, el Time Travel sin DeLorean para unos datos Fail-Safe.

February 23, 2023 by Bluetab

Snowflake, el Time Travel sin DeLorean para unos datos Fail-Safe.

Roberto García Parra

Technical Delivery Manager

Gabriel Gallardo Ruiz

Senior Data Architect

Introducción a Snowflake

Este artículo supone una continuación del artículo inicial que hicimos sobre el almacenamiento en Snowflake, y será el primero de una serie donde entraremos a fondo en las características más diferenciadoras de Snowflake. El primer artículo se puede consultar aquí.

Recordar que una de las características principales del almacenamiento en Snowflake es la inmutabilidad de los archivos: Cuando hay una operación DML sobre una tabla, los ficheros donde están los datos nunca se modifican, sino que se van creando nuevas versiones de los mismos, archivando todas las versiones anteriores por las que han ido pasando los ficheros durante el tiempo de retención establecido en el parámetro DATA_RETENTION_TIME_IN_DAYS parámetro que se puede establecer a nivel base de datos, esquema o tabla.

Este archivado es lo que posibilita las dos funcionalidades avanzadas de Snowflake que se van a ver en este artículo: El Time Travel y el Fail-Safe.

¿Qué es el Time Travel?

El Time Travel es una funcionalidad que permite acceder a versiones históricas por las que han ido pasando los datos en las tablas. Por ejemplo, si tenemos un proceso de carga diaria de una tabla de movimientos contables, podríamos lanzar una consulta de cuál era el estado de los movimientos contables tres días atrás.

¿Qué es el Fail-Safe?

Es un periodo adicional de siete días por el que Snowflake almacena las versiones de los datos para una posible recuperación. Este periodo no es configurable, siempre es de siete días, y únicamente aplica en un tipo de tablas: Las permanentes. 

Los objetos con Fail-Safe son las bases de datos, esquemas y tablas.

¿Qué se puede hacer con el Time Travel?

  • Consultar una foto estática de cualquier momento del pasado hasta un máximo de 90 días. Por ejemplo, de una tabla de movimientos contables, podríamos sacar un balance con los movimientos congelados a una fecha.
  • Recuperar tablas que se hayan borrado accidentalmente de forma muy sencilla mediante un simple comando SQL (UNDROP).
  • Recovery point-in-time: Recuperar datos en un punto concreto, dentro del plazo de los 90 días máximo del time travel.
  • Poder sacar snapshots de los datos para guardarlos permanentemente → Para esto podríamos combinar dos funcionalidades: El time travel y el zero-copy cloning, que veremos más adelante.

¿Cómo utilizar el Fail-Safe?

El Fail-Safe permite recuperar datos hasta siete días máximo después de la expiración del Time Travel. Esta recuperación solamente puede ser hecha a través del equipo de soporte de Snowflake, a diferencia del Time Travel, y se debe hacer vía petición. El Fail-Safe es un mecanismo para poder recuperar datos en caso de emergencia, no está pensado para hacer queries históricas, etc. para eso hay que usar el Time Travel.

No hay un SLA asociado a la recuperación de datos en Fail-Safe: Snoflake habla de horas incluso días para recuperar estos datos.

¿Cómo se configura el Time Travel?

Es un servicio que nos proporciona Snowflake y no hay que hacer nada adicional, más allá de configurar el número de días que queremos que nuestros objetos lo tengan activo. Hay que tener en cuenta lo siguiente:

  • Dependiendo de la edición que tengamos contratada de Snowflake, el número de días permitido de Time Travel puede diferir. A día de hoy, en la edición Standard solamente se puede habilitar hasta un día de Time Travel, mientras que a partir de la edición Enterprise podemos habilitar hasta 90 días de Time Travel.
  • El Time Travel de hasta 90 días solamente está habilitado en las tablas permanentes. Resto de tablas, un día máximo de Time Travel. Si quieres saber más sobre los tipos de tablas, hablamos sobre ellas en nuestro anterior artículo sobre almacenamiento, en la sección DML’s en Snowflake. El parámetro que configura el número de días de Time Travel en las tablas es el DATA_RETENTION_TIME_IN_DAYS. Este valor está por defecto a 1, pero podemos especificar un valor distinto a nivel base de datos o esquema, para que todos los objetos por debajo hereden dicho valor. También es posible configurar un tiempo mínimo de retención a nivel de cuenta, mediante el parámetro MIN_DATA_RETENTION_TIME_IN_DAYS. Este parámetro solamente es configurable por el rol ACCOUNTADMIN, y en caso de tener un valor, el tiempo de retención de una tabla sería el máximo del valor MIN_DATA_RETENTION_TIME_IN_DAYS a nivel cuenta y el DATA_RETENTION_TIME_IN_DAYS de la propia tabla.
  • Si queremos deshabilitar el TIME TRAVEL, simplemente tenemos que establecer un valor cero al parámetro DATA_RETENTION_TIME_IN_DAYS.

¿Cómo se configura el Fail-Safe?

El Fail-Safe no es configurable. Es un periodo fijo de siete días que se activa automáticamente en tablas permanentes sin necesidad de intervención alguna por parte del usuario, una vez que finaliza el periodo de Time Travel, o si se reduce este periodo, y hay datos con antigüedad superior al nuevo periodo definido, los cuales pasarían también automáticamente a Fail-Safe.

Consideraciones a tener en cuenta en el Time Travel y el Fail-Safe

¿Es posible modificar el Time Travel de un objeto?

Sí, es posible, pero hay que tener en cuenta el impacto que tiene dicha modificación:

  • Si se incrementa, la extensión solamente afecta a datos que estén archivados en ese momento, no así a datos que ya hayan pasado a Fail-Safe. Imaginemos que tenemos una tabla con un Time-Travel de 5 días y la modificamos a 10 días, los datos dentro de los 5 días sí se les extendería su periodo a 10, pero los datos con una antigüedad mayor a 5 días que hayan pasado al Fail-Safe, seguirían en el Fail-Safe, incluso si solo ha pasado por ejemplo un día desde que están en el Fail-Safe.
  • Si se disminuye, solamente los datos dentro del nuevo periodo de Time Travel permanecen ahí, mientras que el resto pasa a Fail-Safe. Si reducimos por ejemplo de 20 días a dos días, solamente se mantendrán los datos que se hayan generado en estos últimos dos días, mientras que los datos con antigüedad mayor o igual a 3 días pasan a Fail-Safe.

La modificación del Time Travel de un objeto se hace mediante una sentencia ALTER TABLE, modificando el parámetro DATA_RETENTION_TIME_IN_DAYS al nuevo tiempo en días deseado.

¿Qué pasa cuando el periodo de retención de un contenedor y un objeto chocan y el contenedor es borrado?

El contenedor se refiere a un objeto Snowflake que a su vez contiene 1..n objetos. Dos claros ejemplos son una base de datos, que a su vez contiene 1..n esquemas, y un esquema que a su vez contiene 1..n objetos de esquema tales como tablas, vistas o procedimientos almacenados entre otros.

Cuando una base de datos o esquema tiene definido un periodo de retención, y los objetos hijos tienen definidos un periodo de retención propio, cuando se borra el contenedor padre todo lo que esté contenido se retiene por el periodo definido en el padre, incluso si algunos de los objetos hijo tiene su propio periodo de retención y es diferente al del padre.

Esto quiere decir que si tenemos una base de datos con un periodo de retención de 5 días, y uno de los esquemas contenidos tiene definido un periodo de 10 días, si hay un borrado de la base de datos solamente tendríamos 5 días para recuperar no solo la base de datos sino también cualquiera de los esquemas. Esto aplica también a cuando tenemos un periodo de retención a nivel de objetos, y borramos el esquema que los contiene. En ese caso, el periodo de retención que cuenta siempre es el del esquema.

Si se desea mantener un periodo de retención diferente para alguno de los hijos, estos deben ser borrados previamente a la eliminación del contenedor. Por ejemplo, se borran primero las tablas en las que quiero mantener su periodo propio de retención, y posteriormente se borra el esquema.

Costes del Time Travel y el Fail-Safe

El Time Travel y el Fail Safe aumentan nuestra factura de almacenamiento. Todas las versiones históricas que se vayan archivando de nuestros datos, ocupan un almacenamiento que tendremos que pagar, aunque hay que tener en cuenta que Snowflake, cómo vimos en el artículo de almacenamiento, gestiona esto de la manera más eficiente posible, con lo que si por ejemplo, modificamos datos que afectan a una única micropartición, solo esta micropartición es archivada, pero no archivaría microparticiones no afectadas por la modificación.

Hay que tener cuidado en los siguientes supuestos, que sobre todo en tablas de alto volumen, pueden incrementar considerablemente los costes:

  • Truncados-borrados e inserciones continuos en tablas de alto volumen. Imaginemos que tenemos una tabla de varios gigas, que continuamente borramos y volvemos a cargar. En estos casos, cada vez que hiciéramos esa operación de borrado-inserción, estaríamos archivando varios gigas de tabla, y eso si se multiplica varias veces por el número de días, puede ser importante en la factura.
  • Actualizaciones masivas de datos con frecuencia. Imaginemos que tenemos un proceso que actualiza una columna después de cada inserción. Esto también generaría el archivado de toda la tabla entera.
  • Drops de tablas. Por el mismo motivo que un truncate, esto genera que se archive la tabla completa. Si hacemos continuos drops y recreaciones de la tabla con datos nuevos, una tabla permanente puede disparar los costes de almacenamiento.

Se recomienda para controlar los costes derivados del Time Travel y el Fail-Safe lo siguiente:

  • Si tenemos tablas que son fácilmente reproducibles desde fuera de Snowflake, mejor utilizar tablas transitorias que permanentes. De esta manera, nos ahorraremos los siete días de Fail-Safe y como máximo tendremos un día de Time Travel. Por ejemplo, tablas de lookup, o tablas de apoyo-staging para ciertos procesos ETL’s que no son esenciales. En este último caso, si no es necesario que la tabla persista más allá de la vida de la sesión, se puede configurar incluso como tabla temporal y ahorrar más, ya que en cuanto termina la sesión la tabla desaparece y no se puede recuperar.
  • Las tablas de hechos normalmente deberían ser tablas permanentes, pero si de igual manera las podemos recuperar fácilmente desde el sistema origen en caso de desastre, nos podemos plantear generar algunas como transitorias, y sacar backups periódicos con zero-copy cloning, característica que también se desarrollará en este artículo.

¿Cómo utilizar el Time Travel? Casos de uso prácticos

En nuestro ejemplo, tenemos una tabla donde se carga un stock diario. Lo que hemos hecho, ha sido el día 10 de noviembre cargar el stock de esa fecha, y el día 11 de noviembre hemos machacado el stock del 10 de noviembre por el actual a 11 de noviembre. Fijamos un Time Travel de treinta días a nivel base de datos (que es el que aplicaría por defecto a los objetos por debajo). Pasan 19 días desde la última carga.

Casos de uso que se plantean:

  • Un usuario quiere recuperar mediante una consulta la foto del 10 de noviembre.
  • Por error, uno de nuestros analistas borró la tabla. Es necesario recuperar el stock que teníamos de producto lo más rápido posible.
  • Un usuario nos pide que guardemos una foto del estado del stock a 10 de noviembre, por si nos lo piden en alguna auditoría.
  • Un analista necesita actualizar el stock de un producto concreto en el día 11 de noviembre, pero se equivoca y actualiza todos los productos. Restaurar la tabla al punto de antes del error.

Partimos ya de un stage interno creado en Snowflake donde hemos volcado los ficheros del 10 y el 11 de noviembre, y lanzamos el COPY INTO para insertarlos en la tabla cada día.

Primer caso de uso: Consulta de un estado anterior de la tabla

Si hacemos una consulta sobre la tabla, lo que obtenemos es el stock a día 11 de noviembre:

Para el usuario poder consultar la información a 10 de noviembre en esta tabla, tendría tres opciones:

  • Consulta con un timestamp fijo. Es decir, consultamos la tabla tal cual estaba en un momento específico del tiempo. En nuestro caso, la consultamos a 10 de noviembre:
  • Mediante un offset en segundos. Aquí lo que hacemos es decir que queremos consultar la información al estado de hace 19 días (cuando hacemos la consulta es 29 de noviembre, y queremos los datos del 10 de noviembre). Para ir 19 días hacia atrás, como el offset es en segundos, multiplicamos 60*60*24 (con esto pasamos los segundos a días) y por 19 (que son los días que queremos viajar hacia atrás):
  • Con un ID de query. Ojo con esta opción porque también puede dar problemas. En nuestro caso, cuando la ejecutamos, da el siguiente error:

Nos cercioramos de que ese ID de query sí que existe en el historial completo (Base de datos SNOWFLAKE, esquema ACCOUNT_USAGE, tabla QUERY_HISTORY:

Vemos que el ID es correcto y es justo cuando hicimos el truncate de la tabla para borrar los datos del día 10. El motivo por el que creemos que viene el error es porque el detalle del historial de queries solamente se guarda durante 14 días, con lo cual, este método no es recomendable para lanzar consultas pasado este periodo. Aunque nuestro Time Travel sea mayor (como en este caso, 30 días) el detalle de datos de la query no es accesible.

Segundo caso de uso: Recuperación de una tabla borrada por error

Imaginemos que algún usuario de manera accidental borra del todo la tabla:

drop table stock_diario

Los usuarios empiezan a quejarse que hay aplicaciones que han dejado de funcionar, tardaríamos bastante tiempo en reprocesar el archivo en origen, dependemos de un equipo que nos lo haga…

Snowflake facilita la recuperación de una tabla borrada durante el tiempo del Time Travel con una simple instrucción. Undrop la cual al ser una operación de metadata se ejecuta inmediatamente. No es necesario tener que localizar un backup donde estaba esa tabla ok, restaurarlo, sacar la tabla… simplemente ejecutar esta sentencia.

Demostración a continuación, borramos la tabla:

Ejecutamos una query y nos devuelve el siguiente error:

Ejecutamos la sentencia undrop:

Y vemos que Snowflake nos devuelve el mensaje de que la tabla ha sido correctamente restaurada.

Y comprobamos que podemos volver a hacer queries. Por supuesto, el Time Travel después de la recuperación se mantiene, pudiendo también consultar fotos anteriores de la tabla tal y como vemos en la captura:

Importante a tener en cuenta: El UNDROP siempre restaura la última versión de los datos que hubiese en el momento del borrado.

Tercer caso de uso: Sacar una foto estática de un estado de la tabla

Ya se ha visto que durante el periodo de Time Travel podemos consultar el estado anterior de una tabla. Pero, ¿y si un usuario pidiera guardar el estado de esa tabla de forma permanente? Este caso de uso es frecuente en el mundo financiero y de la auditoría para cosas tales como poder sacar un estado de cuentas con los movimientos a una determinada fecha, o que un regulador nos pida sacar instantáneas de los datos a determinados momentos para una consulta posterior.

La opción más inmediata para satisfacer este requerimiento sería combinar las funcionalidades de zero-copy cloning y time travel. Las ventajas que nos ofrece esta opción sería:

  • No duplicamos almacenamiento por la instantánea. Durante el tiempo de Time Travel, tenemos un único fichero, y nuestro clon apuntaría a esa versión de los datos. Cuando el Time Travel expire, Snowflake sabrá que hay un clon apuntando a esos datos y por tanto no los borrará. Si lo hiciésemos insertando los datos en una nueva tabla, durante el Time Travel de esa versión de los datos se estaría duplicando el almacenamiento.
  • Creamos todo en una simple sentencia.

A continuación se muestra el clonado de nuestra tabla de stock con la foto del 10 de noviembre:

Imaginemos que pasa el time travel de esta tabla. Podemos simularlo haciendo un ALTER TABLE y poniendo la tabla a 10 días (han pasado más de 10 días desde la última modificación):

Si se intenta sacar la foto a 10 de Noviembre desde la tabla original, Snowflake devuelve el siguiente error:

Ya que ese estado de los datos tenían una antigüedad mayor a 10 días, Snowflake lo ha llevado directamente a Fail-Safe.

Si consultamos el clon que se acaba de generar:

Se ve que a pesar de que el Time Travel ha expirado, mantenemos la foto del 10 de noviembre, y esta foto persistirá salvo que borremos el clon.

Cuarto caso de uso: Restaurar la tabla a un estado anterior

Imaginemos que le piden a un usuario actualizar el stock de impresoras de 15 a 14 unidades. Para ello el usuario genera la siguiente consulta:

El usuario se ha olvidado de un pequeño detalle y es aplicar un where para únicamente actualizar la línea de las impresoras, con lo que ahora todo el stock está a 14 unidades de forma errónea.

Para recuperar la tabla, podríamos recrearla gracias al Time Travel, mediante una sentencia create or replace:

Lo que estamos haciendo es sustituir la tabla al estado al que estaba ayer (que es el correcto).

IMPORTANTE: Hay que tener en cuenta que cuando hacemos un REPLACE TABLE como en este caso, se genera una nueva tabla con una metadata limpia, con lo cual perdemos el Time Travel en esa tabla. Si por ejemplo, intentamos recuperar la información 5 minutos atrás, nos dirá que no hay Time Travel de ese momento:

Cuando hagamos estas restauraciones debemos estar muy seguros. Una opción recomendable sería antes de machacar la tabla original, hacer el replace en una tabla nueva y revisar que todo esté ok.

Conclusiones

El Time Travel y el Fail-Safe son dos funcionalidades que nos proporciona Snowflake sin tener que mantener ni configurar prácticamente nada, y que cubren gran cantidad de casos de uso cómo consultas de histórico, recuperación rápida en caso de error o problema y la posibilidad de sacar instantáneas a un momento determinado en combinación con el zero-copy cloning.

Es importante tener muy claro los tiempos de retención de cada una de las bases de datos-esquemas tablas, y seleccionar el tipo de tabla adecuado en consecuencia, para optimizar al máximo el coste de almacenamiento.

Navegación

Introducción

¿Qué es el Time Travel?

¿Qué es el Fail-Safe?

¿Qué se puede hacer con el Time Travel?

¿Cómo utilizar el Fail-Safe?

¿Cómo se configura el Time Travel?

¿Cómo se configura el Fail-Safe?

Consideraciones a tener en cuenta en el Time Travel y el Fail-Safe

Costes del Time Travel y el Fail-Safe

¿Cómo utilizar el Time Travel? Casos de uso prácticos

Principales conclusiones

Autores

¿Quieres saber más de lo que ofrecemos y ver otros casos de éxito?
DESCUBRE BLUETAB

Roberto García Parra

Technical Delivery Manager

Gabriel Gallardo Ruiz

Senior Data Architect

SOLUCIONES, SOMOS EXPERTOS

DATA STRATEGY
DATA FABRIC
AUGMENTED ANALYTICS

Te puede interesar

¿Existe el Azar?

November 10, 2021
LEER MÁS

We have a Plan B

September 17, 2020
LEER MÁS

MICROSOFT FABRIC: Una nueva solución de análisis de datos, todo en uno

October 16, 2023
LEER MÁS

CDKTF: Otro paso en el viaje del DevOps, introducción y beneficios.

May 9, 2023
LEER MÁS

Some of the capabilities of Matillion ETL on Google Cloud

July 11, 2022
LEER MÁS

Databricks on Azure – An architecture perspective (part 2)

March 24, 2022
LEER MÁS

Filed Under: Blog, Practices, Tech

  • « Go to Previous Page
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Interim pages omitted …
  • Page 18
  • Go to Next Page »

Footer

LegalPrivacy Cookies policy

Patron

Sponsor

© 2025 Bluetab Solutions Group, SL. All rights reserved.